7.已知命題p:A={a|?x∈R,x2-ax+2a≥0},命題q:B={a|?x∈[-1,4],2x-a+1≥0},若p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

分析 分別求出p,q為真時(shí)的a的范圍,根據(jù)p,q一真一假,得到關(guān)于a的不等式組,解出即可.

解答 解:?x∈R,x2-ax+2a≥0,
則△=a2-8a≤0,解得:a∈[0,8],
故p:A=[0,8],
?x∈[-1,4],2x-a+1≥0},
則a≤(2x+1)min=$\frac{3}{2}$,
故q:B=(-∞,$\frac{3}{2}$],
若p∧q為假,p∨q為真,
則p,q一真一假,
則$\left\{\begin{array}{l}{a>8或a<0}\\{a≤\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{0≤a≤8}\\{a>\frac{3}{2}}\end{array}\right.$,
解得:a<0或$\frac{3}{2}$<a≤8,
即實(shí)數(shù)a的取值范圍是(-∞,0)∪($\frac{3}{2}$,8].

點(diǎn)評(píng) 本題考查了符合命題的判斷,考查二次函數(shù)的性質(zhì)以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=$\frac{1}{1-2x}$+lg(1+3x)的定義域是( 。
A.(-∞,-$\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知$f(x)=\frac{{2{x^2}+a}}{x}$,且f(1)=3.
(1)試求a的值,并用定義證明f(x)在[$\frac{{\sqrt{2}}}{2}$,+∞)上單調(diào)遞增;
(2)設(shè)關(guān)于x的方程f(x)=x+b的兩根為x1,x2,問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+m+1≥|x1-x2|對(duì)任意的$b∈[{2,\sqrt{13}}]$恒成立?若存在,求出m的取值范圍;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.近年來(lái),手機(jī)已經(jīng)成為人們?nèi)粘I钪胁豢扇鄙俚漠a(chǎn)品,手機(jī)的功能也日趨完善,已延伸到了各個(gè)領(lǐng)域,如拍照,聊天,閱讀,繳費(fèi),購(gòu)物,理財(cái),娛樂(lè),辦公等等,手機(jī)的價(jià)格差距也很大,為分析人們購(gòu)買手機(jī)的消費(fèi)情況,現(xiàn)對(duì)某小區(qū)隨機(jī)抽取了200人進(jìn)行手機(jī)價(jià)格的調(diào)查,統(tǒng)計(jì)如下:
年齡     價(jià)格5000元及以上3000元-4999元1000元-2999元1000元以下
45歲及以下1228664
45歲以上3174624
(Ⅰ)完成關(guān)于人們使用手機(jī)的價(jià)格和年齡的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,認(rèn)為人們使用手機(jī)的價(jià)格和年齡有關(guān)?
(Ⅱ)如果用分層抽樣的方法從樣本手機(jī)價(jià)格在5000元及以上的人群中選擇5人調(diào)查他的收入狀況,再?gòu)倪@5人中選3人,求3人的年齡都在45歲及以下的概率.
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.0250.0100.001
k3.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.正四面體ABCD的體積為V,M是正四面體ABCD內(nèi)部的點(diǎn),若“${V_{M-ABC}}≥\frac{1}{4}V$”的事件為X,則概率P(X)為( 。
A.$\frac{17}{32}$B.$\frac{37}{64}$C.$\frac{19}{32}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某校300名高三學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,由圖中數(shù)據(jù)估計(jì)此次數(shù)學(xué)成績(jī)的眾數(shù)、平均分分別為(  )
A.60、69B.65、71C.65、73D.60、75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|-4<x<1},B={x|2x≥1}.
(Ⅰ)求A∩B,A∪B;
(II)設(shè)函數(shù)$f(x)=\sqrt{4-2x}+{log_2}(2x-1)$的定義域?yàn)镃,求(∁RA)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)$y=tanx+\sqrt{πx-2{x^2}}$的定義域是[0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知x>1,則不等式x+$\frac{1}{x-1}$的最小值為( 。
A.4B.2C.1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案