設(shè)函數(shù)f(x)=x2+bx+c(a,b,c∈R),函數(shù)f(x)的導(dǎo)數(shù)記為f′(x).

(1)若a=f′(2),b=f′(1),c=f′(0),求a,b,c的值;

(2)在(1)的條件下,有F(n)=,求證:F(1)+F(2)+F(3)+…+F(n)<(n∈N*);

(3)設(shè)關(guān)于x的方程f′(x)=0的兩個(gè)實(shí)數(shù)根為a,β,且1<α<β<2,試問(wèn):是否存在正整數(shù)n0,使得|f′(n0)|≤?請(qǐng)說(shuō)明理由.

答案:(1)解:由題意有a=f′(2)=22+2a+b,b=f′(1)=12+a+b,c=f′(0)=b.解得a=-1,b=-3,c=-3.3分

(2)證明:由已知有f′(n)=n2-n-3,F(xiàn)(n)=.

當(dāng)n=1時(shí),F(xiàn)(1)=-1<;當(dāng)n=2時(shí),F(xiàn)(1)+F(2)=-1+1=0<;當(dāng)n≥3時(shí),F(xiàn)(n)==.

∴F(1)+F(2)+F(3)+…+F(n)<F(1)+F(2)+×[(1)+()+()+…+()]=×(1+)=(1+)()=(++)<.

∴F(1)+F(2)+F(3)+…+F(n)<(n∈N*).                                         

(3)解:∵f′(x)=(x-α)(x-β),

∴f′(1)·f′(2)=(1-α)(1-β)(2-α)(2-β)

=(α-1)(2-α)(β-1)(2-β)≤[2·[2=.

∴0<f′(1)≤或0<f′(2)≤.

故存在n0=1或n0=2,使得|f′(n0)|≤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)p1,p2,…,pn均為正數(shù)時(shí),稱(chēng)
n
p1+p2+…+pn
為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項(xiàng)均為正數(shù),且其前n項(xiàng)的“均倒數(shù)”為
1
2n+1

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=
an
2n+1
(n∈N*),試比較cn+1與cn的大�。�
(3)設(shè)函數(shù)f(x)=-x2+4x-
an
2n+1
,是否存在最大的實(shí)數(shù)λ,使當(dāng)x≤λ時(shí),對(duì)于一切正整數(shù)n,都有f(x)≤0恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式; 
(2)畫(huà)出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間.
(3)若方程f(x)=k有兩個(gè)不等的實(shí)數(shù)根,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,角A,B,C所對(duì)邊長(zhǎng)分別是a,b,c,設(shè)函數(shù)f(x)=x2+bx-
1
4
為偶函數(shù),且f(cos
B
2
)=0

(1)求角B的大��;
(2)若△ABC的面積為
3
4
,其外接圓的半徑為
2
3
3
,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,-4≤x<0
-x+3,0≤x≤4
,且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式;
(2)畫(huà)出函數(shù)f(x)的圖象,并寫(xiě)出函數(shù)f(x)的定義域、值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2-x+n
x2+x+1
(x∈R,x≠
n-1
2
,x∈N*)
,f(x)的最小值為an,最大值為bn,記cn=(1-an)(1-bn
則數(shù)列{cn}是
常數(shù)
常數(shù)
數(shù)列.(填等比、等差、常數(shù)或其他沒(méi)有規(guī)律)

查看答案和解析>>

同步練習(xí)冊(cè)答案