已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左右焦點(diǎn)分別為F1F2,且兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1•e2的取值范圍是( )
A.(0,
B.
C.
D.
【答案】分析:設(shè)橢圓與雙曲線的半焦距為c,PF1=r1,PF2=r2.利用三角形中邊之間的關(guān)系得出c的取值范圍,再根據(jù)橢圓或雙曲線的性質(zhì)求出各自的離心率,最后依據(jù)c的范圍即可求出e1•e2的取值范圍是.
解答:解:設(shè)橢圓與雙曲線的半焦距為c,PF1=r1,PF2=r2
由題意知r1=10,r2=2c,且r1>r2,2r2>r1,
∴2c<10,2c+2c>10,
<c<5.⇒
=;
=
,
故選C.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、橢圓的簡(jiǎn)單性質(zhì)、雙曲線的簡(jiǎn)單性質(zhì)、不等式的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)為(0,
2
),且過點(diǎn)A(1,
2
)
,過A作傾斜角互補(bǔ)的兩條直線,它們與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B和點(diǎn)C.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:直線BC的斜率為定值,并求這個(gè)定值.
(3)求三角形ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的橢圓C的一個(gè)焦點(diǎn)F(4,0),長(zhǎng)軸端點(diǎn)到較近焦點(diǎn)的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點(diǎn).
(1)求橢圓的方程;
(2)若x1+x2=8,在x軸上是否存在一點(diǎn)D,使|
DA
|=|
DB
|若存在,求出D點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),離心率等于
1
2
,則C的方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的橢圓C:
x2
a2
+
y2
b2
=1的焦點(diǎn)為F1(0,3),M(x,4)(x>0)橢圓C上一點(diǎn),△MOF1的面積為
3
2

(1)求橢圓C的方程.
(2)是否存在平行于OM的直線l,使得直線l與橢圓C相較于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線l的方程,請(qǐng)說明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(
15
,0),直線y=x與橢圓的一個(gè)交點(diǎn)的橫坐標(biāo)為2,則橢圓方程為( 。
A、
x2
16
+y2=1
B、x2+
y2
16
=1
C、
x2
20
+
y2
5
=1
D、
x2
5
+
y2
20
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案