已知函數(shù)f(x)=x2ln|x|,
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的單調區(qū)間;
(3)若關于x的方程f(x)=kx-1在(0,+∞)上有實數(shù)解,求實數(shù)k的取值范圍.
解:(1)函數(shù)f(x)的定義域為{x|x∈R且x≠0}.
∵f(-x)=(-x)
2ln|-x|=x
2ln|x|=f(x),∴函數(shù)f(x)為偶函數(shù).
(2)當x>0時,f(x)=x
2lnx.
∴
=2x
,
令f
′(x)=0,解得
.
若
,則f
′(x)<0,函數(shù)f(x)單調遞減;
若
,則f
′(x)>0,函數(shù)f(x)單調遞增.
再由函數(shù)f(x)是偶函數(shù),當x<0時的單調性如下:
函數(shù)f(x)的單調遞增區(qū)間是
;單調遞減區(qū)間是
.
綜上可知:函數(shù)f(x)的單調遞增區(qū)間是
,
;
單調遞減區(qū)間是
,
.
(3)由f(x)=kx-1,得
,
令g(x)=
.
當x>0時,g
′(x)=
=
,可知g
′(1)=0.
當0<x<1時,g
′(x)<0,函數(shù)g(x)單調遞減;
當x>1時,g
′(x)>0,函數(shù)g(x)單調遞增.
∴當x>0時,g(x)
min=g(1)=1.
因此關于x的方程f(x)=kx-1在(0,+∞)上有實數(shù)解的k的取值范圍是[1,+∞).
分析:(1)利用函數(shù)的奇偶性的定義即可判斷出;
(2)先對x>0時利用導數(shù)得出單調性,再根據(jù)函數(shù)的奇偶性可以得出x<0時的單調性;
(3)通過分離參數(shù)k,利用導數(shù)即可求出此時函數(shù)的極值即最值,從而可得出k的取值范圍.
點評:熟練掌握函數(shù)的奇偶性、利用導數(shù)研究函數(shù)的單調性及分離參數(shù)法是解題的關鍵.