設函數(shù)f(x)=
x
x+2
(x>0),觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f(f1(x))=
x
3x+4
,f3(x)=f(f2(x))=
x
7x+8
,…,根據(jù)以上事實,由歸納推理可得:當n∈N*且n≥2時,fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n
分析:由已知所給的前幾函數(shù)的特點:分子都是x,分母是關于x的一次式,其常數(shù)項為2n,一次項的系數(shù)比常數(shù)項小1,據(jù)此即可得出答案.
解答:解:觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f(f1(x))=
x
3x+4
,f3(x)=f(f2(x))=
x
7x+8
,…,
可知:分子都是x,分母是關于x的一次式,其常數(shù)項為2n,一次項的系數(shù)比常數(shù)項小1,故fn(x)=
x
(2n-1)x+2n

故答案為
x
(2n-1)x+2n
點評:善于分析、猜想、歸納所給的式子的規(guī)律特點是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x
x+2
(x>0),觀察:
 f1(x)=f(x)=
x
x+2
,
 f2(x)=f(f1(x))=
x
3x+4
,
 f3(x)=f(f2(x))=
x
7x+8
,
 f4(x)=f(f3(x))=
x
15x+16
,

根據(jù)以上事實,由歸納推理可得:
當n∈N*且n≥2時,fn(x)=f(fn-1(x))=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=m-e-nx(m,n∈R)
(1)若f(x)在點x=0處的切線方程為y=x,求m,n的值.
(2)在(1)條件下,設x≥0且
x
x+a
有意義時,恒有f(x)≥
x
x+a
成立
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
x
x-1
(x>1),若a從1、2、3這三個數(shù)中任取一個所得的數(shù),b 是從2、3、4、5這四個數(shù)中任取一個所得的數(shù),則使f(x)>b恒成立的概率為
5
6
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x
x+2
(x>0)
,定義fn(x),n∈N如下:當n=1時,f1(x)=f(x);當n∈N且n≥2時,fn(x)=f(fn-1(x)).觀察:
f1(x)=f(x)=
x
x+2

f2(x)=f(f1(x))=
x
3x+4

f3(x)=f(f2(x))=
x
7x+8

f4(x)=f(f3(x))=
x
15x+16


根據(jù)以上事實,由歸納推理可得:當n∈N時,fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n

查看答案和解析>>

同步練習冊答案