【題目】某學校為進行“陽光運動一小時”活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地。如圖,點上,點上,且點在斜邊上,已知米,米,,設矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正的常數(shù)).

(1)試用表示,并指出如何設計矩形的長和寬,才能使得矩形的面積最大,且求出的最大值;

(2)求總造價關于面積的函數(shù),說明如何選取,使總造價最低(不要求求出最低造價).

【答案】(1) ,當米,米時,才能使得矩形的面積最大且最大值為平方米.

(2) ,當18米時,使總造價最低.

【解析】

1)在中,求出,利用即可求出解析式,利用二次函數(shù)的圖象與性質即可求解;

2)求出的面積,即可表示出陰影部分的面積,結合題意即可求出總造價的解析式,結合基本不等式求最值,即可求解.

(1)中,,所以,.根據(jù)二次函數(shù)的圖象與性質可知,當時,有最大值為,所以當米,米時,才能使得矩形的面積最大且最大值為平方米.

2)在中,,所以的面積為,則矩形健身場地的造價為,草坪的造價為,所以總造價關于面積的函數(shù),由(1)知,故,由基本不等式可知,當且僅當取等號,令18,所以當18米時,使總造價最低.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況某調查機構借助網(wǎng)絡進行了問卷調查,并從參與調查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):

)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?(現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經常使用共享單車的概率.

將頻率視為概率,從市所有參與調查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經常使用共享單車的人數(shù)為,的數(shù)學期望和方差.

參考公式 其中.

參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,直線不過原點且不平行于坐標軸,交于、兩點,線段的中點為

(1)證明直線的斜率與的斜率的乘積為定值;

(2)過點,延長線段交于點,四邊形能否為平行四邊形?若能,求出的方程;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為2,過短軸的一個端點與兩個焦點的圓的面積為,過橢圓的右焦點作斜率為的直線與橢圓相交于兩點,線段的中點為.

(1)求橢圓的標準方程;

(2)過點垂直于的直線與軸交于點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,透明塑料制成的長方體ABCD﹣A1B1C1D1內灌進一些水,固定容器底面一邊BC于水平地面上,再將容器傾斜,隨著傾斜度不同,有下面五個命題:

①有水的部分始終呈棱柱形;

②沒有水的部分始終呈棱柱形;

③水面EFGH所在四邊形的面積為定值;

④棱A1D1始終與水面所在平面平行;

⑤當容器傾斜如圖(3)所示時,BEBF是定值.

其中所有正確命題的序號是 ____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列判斷中正確的是( )

A. “若,則有實數(shù)根”的逆否命題是假命題

B. ”是“直線與直線平行”的充要條件

C. 命題“”是真命題

D. 命題“”在時是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題,;命題:關于的方程有兩個不同的實數(shù)根.

(1)若為真命題,求實數(shù)的取值范圍;

為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)證明:當時, ;

(2)若當時, ,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極坐標系的極點為直角坐標系xOy的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同直線的極坐標方程為,曲線C的參數(shù)方程為為參數(shù),設直線l與曲線C交于A,B兩點.

寫出直線的普通方程與曲線C的直角坐標方程;

已知點P在曲線C上運動,求點P到直線距離的最大值.

查看答案和解析>>

同步練習冊答案