【題目】隨著科技的發(fā)展,近年看電子書的國人越來越多;所以近期有許多人呼呼“回歸紙質(zhì)書”,目前出版物閱讀中紙質(zhì)書占比出現(xiàn)上升現(xiàn)隨機選出200人進行采訪,經(jīng)統(tǒng)計這200人中看紙質(zhì)書的人數(shù)占總?cè)藬?shù).將這200人按年齡分成五組:第l組,第2組,第3組,第4組,第5組,其中統(tǒng)計看紙質(zhì)書的人得到的頻率分布直方圖如圖所示.

(1)求的值及看紙質(zhì)書的人的平均年齡;

(2)按年齡劃分,把年齡在的稱青壯年組,年齡在的稱為中老年組,若選出的200人中看電子書的中老年人有10人,請完成下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為看書方式與年齡層有關(guān)?

看電子書

看紙質(zhì)書

合計

青壯年

中老年

合計

附:(其中).

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1),;(2)列聯(lián)表見解析,能.

【解析】

1)由頻率分布直方圖均值公式計算求解即可;(2)計算各段的人數(shù)完成列聯(lián)表,利用公式求解的值求解,對照臨界值表判斷下結(jié)論即可

1)由圖可得:,得

所以看紙質(zhì)書的人的平均年齡為:

.

2)由題意得看紙質(zhì)書和電子書的人數(shù)分別為:.

所以看紙質(zhì)書的160人中,青壯年組、中老年組的人數(shù)分別為:

.

所以列聯(lián)表為:

計算得的觀測值為

所以我們能在犯錯誤的概率不超過0.1的前提下認為看書方式與年齡層有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線與拋物線交于兩點,且.

(1)求的方程;

(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標;若不存在,請說明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點為,左焦點為,離心率,過點的直線與橢圓交于另一個點,且點軸上的射影恰好為點,若

(1)求橢圓的標準方程;

(2)過圓上任意一點作圓的切線與橢圓交于,兩點,以為直徑的圓是否過定點,如過定點,求出該定點;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0),其右焦點為F1,0),離心率為

)求橢圓C的方程;

)過點F作傾斜角為α的直線l,與橢圓C交于P,Q兩點.

)當時,求△OPQO為坐標原點)的面積;

)隨著α的變化,試猜想|PQ|的取值范圍,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓柱,底面半徑為1,高為2,是圓柱的一個軸截面,動點從點出發(fā)沿著圓柱的側(cè)面到達點,其路徑最短時在側(cè)面留下的曲線記為:將軸截面繞著軸,逆時針旋轉(zhuǎn) 角到位置,邊與曲線相交于點.

(1)當時,求證:直線平面

(2)當時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標準方程:

(1)橢圓的焦點在軸上,焦距為4,且經(jīng)過點;

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右頂點分別為,過左焦點的直線交橢圓兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為6

(1)求橢圓的方程;

(2)設(shè)直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD平面CDEF,BAD=CDA=90,,M是線段AE上的動點.

(1)試確定點M的位置,使AC平面DMF,并說明理由;

(2)(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩年度未發(fā)生有責(zé)任道路交通事故

下浮

上三年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮

上一個年度發(fā)生有責(zé)任交通死亡事故

上浮

某機構(gòu)為了解某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損元,一輛非事故車盈利元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

同步練習(xí)冊答案