(05年湖南卷)(12分)

       已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,求角A、B、C的大小.

解析:解法一  由

       得

       所以

       即

       因?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090417/20090417162913005.gif' width=71>所以,從而

       由 從而.

       由

       即

       由此得所以

解法二:由

       由、,所以

       即

       由

       所以

       即             因?yàn)?IMG height=19 src='http://thumb.zyjl.cn/pic1/img/20090417/20090417162913022.gif' width=63>,所以

 

       由從而,知B+2C=不合要求.

       再由,得  所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年湖南卷理)(14分)

    已知函數(shù)f(x)=lnx,g(x)=ax2+bx,a≠0.

   (Ⅰ)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;

   (Ⅱ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點(diǎn)P、Q,過(guò)線段PQ的中點(diǎn)作x軸的垂線分別交C1,C2于點(diǎn)M、N,證明C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年湖南卷理)(14分)

已知橢圓C:=1(a>b>0)的左.右焦點(diǎn)為F1、F2,離心率為e. 直線

l:y=ex+a與x軸.y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對(duì)稱點(diǎn),設(shè)=λ.

   (Ⅰ)證明:λ=1-e2;

   (Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年湖南卷文)(14分)

已知橢圓C:=1(a>b>0)的左.右焦點(diǎn)為F1、F2,離心率為e. 直線

l:y=ex+a與x軸.y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對(duì)稱點(diǎn),設(shè)=λ.

   (Ⅰ)證明:λ=1-e2

   (Ⅱ)若,△PF1F2的周長(zhǎng)為6;寫出橢圓C的方程;

   (Ⅲ)確定λ的值,使得△PF1F2是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年湖南卷)已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為                                    (   )

  A.30º                B.45º                 C.60º                D.90º

查看答案和解析>>

同步練習(xí)冊(cè)答案