函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則f(m+1)的值是(  )
A.(-∞,+∞)B.(-∞,0)C.0D.(0,+∞)
由y=x2+x=0,解得x=0或x=-1,即兩個(gè)零點(diǎn)之間的距離等于1,
又∵a>0
∴f(x)圖象由函數(shù)y=x2+x圖象向上平移,此時(shí)函數(shù)f(x)的兩個(gè)零點(diǎn)之間的距離小于1,
∵m+1-m=1,f(m)<0
∴m+1一定超出了小于零的區(qū)間,
根據(jù)二次函數(shù)的圖象可知f(m+1)>0,
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)如圖,已知二次函數(shù),直線lx = 2,直線ly = 3tx(其中1< t < 1,t為常數(shù));若直線l、l與函數(shù)的圖象所圍成的封閉圖形如圖(5)陰影所示.(1)求y = ;(2)求陰影面積s關(guān)于t的函數(shù)s = u(t)的解析式;(3)若過點(diǎn)A(1,m)(m≠4)可作曲線s=u(t)(tR)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=ax2+bx+c的圖象向左平移2個(gè)單位,再向上平移3個(gè)單位,得到的二次函數(shù)為y=x2-2x+1,則b=______,c=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x2-4x+5在[0,m]上的最大值為5,最小值為1,則m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=2x2-mx+5,m∈R,它在(-∞,-3]上單調(diào)遞減,則m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)f(1)>0,求證:
(1)方程f(x)=0有實(shí)數(shù)根;
(2)-2<
b
a
<-1;
(3)設(shè)x1,x2是方程f(x)=0的兩個(gè)實(shí)數(shù)根,則
3
3
≤|x1-x2|
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若二次函數(shù)f(x)=ax2+bx在(-∞,1)上是增函數(shù),在(1,+∞)上是減函數(shù),則f(1)______0(填<、>、=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知當(dāng)x∈[0,2]時(shí),函數(shù)y=x2-2ax+a2-2a+2有最小值5,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則      .

查看答案和解析>>

同步練習(xí)冊答案