若拋物線的通徑長為12,則拋物線上的動(dòng)點(diǎn)到焦點(diǎn)的最近距離為

[  ]
A.

3

B.

6

C.

12

D.

不確定

答案:A
解析:

考查拋物線的定義與幾何性質(zhì).問題可轉(zhuǎn)化為拋物線上的點(diǎn)到準(zhǔn)線距離最近,顯然是拋物線頂點(diǎn),最近距離為,而2p=12,∴=3.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(x0,y0)(x0≠0)在拋物線E:y2=2px(p>0)上,拋物線的焦點(diǎn)為F.有以下命題:
①拋物線E的通徑長為2p;
②若p=2,則|MF|-x0恒為定值1;
③若2p=1,且△MON(O為坐標(biāo)原點(diǎn),N在拋物線E上)為正三角形,則|MN|=4
3
;
④若2p=1,則拋物線E上一定存在兩點(diǎn)關(guān)于直線y=-x+3對稱.
其中你認(rèn)為正確的所有命題的序號(hào)為
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(x0,y0)(x0≠0)在拋物線E:y2=2px(p>0)上,拋物線的焦點(diǎn)為F.有以下命題:
①拋物線E的通徑長為2p;
②若以M為切點(diǎn)的拋物線E的切線為l,則直線y=y0與直線l所成的夾角和直線MF與直線l所成的夾角相等;
③若2p=1,且△MON(O為坐標(biāo)原點(diǎn),N在拋物線E上)為正三角形,則|MN|=4
3
;
④若2p=1,b∈(
3
4
,+∞)
,則拋物線E上一定存在兩點(diǎn)關(guān)于直線y=-x+b對稱.
其中你認(rèn)為正確的所有命題的序號(hào)為
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一輛卡車高3米,寬1.6米,欲通過拋物線形隧道,拱口寬恰好是拋物線的通徑長,若拱口寬為a米,則能使卡車通過的a的最小整數(shù)值是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省達(dá)州市萬源三中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:填空題

已知點(diǎn)M(x,y)(x≠0)在拋物線E:y2=2px(p>0)上,拋物線的焦點(diǎn)為F.有以下命題:
①拋物線E的通徑長為2p;
②若以M為切點(diǎn)的拋物線E的切線為l,則直線y=y與直線l所成的夾角和直線MF與直線l所成的夾角相等;
③若2p=1,且△MON(O為坐標(biāo)原點(diǎn),N在拋物線E上)為正三角形,則;
④若2p=1,,則拋物線E上一定存在兩點(diǎn)關(guān)于直線y=-x+b對稱.
其中你認(rèn)為正確的所有命題的序號(hào)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期末題 題型:填空題

已知點(diǎn)M(x0,y0)(x0≠0)在拋物線E:y2=2px(p>0)上,拋物線的焦點(diǎn)為F.有以下命題:
①拋物線E的通徑長為2p;
②若以M為切點(diǎn)的拋物線E的切線為l,則直線y=y0與直線l所成的夾角和直線MF與直線l所成的夾角相等;
③若2p=1,且△MON(O為坐標(biāo)原點(diǎn),N在拋物線E上)為正三角形,則 
④若2p=1, ,則拋物線E上一定存在兩點(diǎn)關(guān)于直線y=﹣x+b對稱.
其中你認(rèn)為正確的所有命題的序號(hào)為 (    ).

查看答案和解析>>

同步練習(xí)冊答案