【題目】某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)溫度,四周墻上裝有如圖所示的通風(fēng)設(shè)施,該設(shè)施的下部是等邊三角形ABC,其中AB=2米,上部是半圓,點(diǎn)EAB的中點(diǎn).△EMN是通風(fēng)窗,(其余部分不通風(fēng))MN是可以沿設(shè)施的邊框上下滑動(dòng)且保持與AB平行的伸縮桿(MNAB不重合).

(1)設(shè)MNC之間的距離為x米,試將△EMN的面積S表示成的函數(shù);

(2)當(dāng)MNC之間的距離為多少時(shí),△EMN面積最大?并求出最大值.

【答案】12

【解析】

試題(1)本題為分類(lèi)求等腰三角形面積:當(dāng)MN在三角形區(qū)域內(nèi)滑動(dòng)時(shí),利用直角三角形求高及底邊長(zhǎng);當(dāng)MN在半圓形區(qū)域滑動(dòng)即時(shí),利用圓的方程求底邊長(zhǎng)(2)求分段函數(shù)最值,先分兩段分別求最值:一段為二次函數(shù)最值,利用對(duì)稱(chēng)軸與定義區(qū)間位置關(guān)系即得;另一段可轉(zhuǎn)化為二次函數(shù)或利用基本不等式求最值,也可結(jié)合導(dǎo)數(shù)求最值

試題解析:(1當(dāng)MN在三角形區(qū)域內(nèi)滑動(dòng)時(shí)

是等腰三角形,

連接ECMNP點(diǎn),則PC=xPN=,

的面積

當(dāng)MN在半圓形區(qū)域滑動(dòng)即時(shí)

所以

2時(shí),的對(duì)稱(chēng)軸為

所以

時(shí),

當(dāng)且僅當(dāng)取等號(hào),

所以三角形EMN的面積最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某分公司經(jīng)銷(xiāo)某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納(為常數(shù),)的管理費(fèi).根據(jù)多年的統(tǒng)計(jì)經(jīng)驗(yàn),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元時(shí),產(chǎn)品一年的銷(xiāo)售量為為自然對(duì)數(shù)的底數(shù))萬(wàn)件.已知每件產(chǎn)品的售價(jià)為40元時(shí),該產(chǎn)品一年的銷(xiāo)售量為500萬(wàn)件.經(jīng)物價(jià)部門(mén)核定每件產(chǎn)品的售價(jià)最低不低于35元,最高不超過(guò)41元.

(Ⅰ)求分公司經(jīng)營(yíng)該產(chǎn)品一年的利潤(rùn)萬(wàn)元與每件產(chǎn)品的售價(jià)元的函數(shù)關(guān)系式;

(Ⅱ)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該產(chǎn)品一年的利潤(rùn)最大,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知扇形的周長(zhǎng)為8,面積是4,求扇形的圓心角.

(2)已知扇形的周長(zhǎng)為40,當(dāng)它的半徑和圓心角取何值時(shí),才使扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)工會(huì)利用 “健步行APP”開(kāi)展健步走積分獎(jiǎng)勵(lì)活動(dòng)會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分)為了解會(huì)員的健步走情況,工會(huì)在某天從系統(tǒng)中隨機(jī)抽取了1000名會(huì)員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為, , , , , , 九組,整理得到如下頻率分布直方圖

求當(dāng)天這1000名會(huì)員中步數(shù)少于11千步的人數(shù)

從當(dāng)天步數(shù)在, , 的會(huì)員中按分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人積分之和不少于200分的概率;

寫(xiě)出該組數(shù)據(jù)的中位數(shù)(只寫(xiě)結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某觀(guān)測(cè)站在目標(biāo)的南偏西方向,從出發(fā)有一條南偏東走向的公路,在處測(cè)得與相距的公路處有一個(gè)人正沿著此公路向走去,走到達(dá),此時(shí)測(cè)得距離為,若此人必須在分鐘內(nèi)從處到達(dá)處,則此人的最小速度為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】0, 1, 2, 3, 4, 5這六個(gè)數(shù)字, 可以組成______個(gè)無(wú)重復(fù)數(shù)字的三位數(shù), 也可以組成______個(gè)能被5整除且無(wú)重復(fù)數(shù)字的五位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,EPC的中點(diǎn).

)證明PA//平面BDE;

)求二面角B—DE—C的平面角的余弦值;

)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】口袋中有100個(gè)大小相同的紅球、白球、黑球,其中紅球45個(gè),從口袋中摸出一個(gè)球,摸出白球的概率為0.23,則摸出黑球的概率為(

A.0.45B.0.67

C.0.64D.0.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的左、右頂點(diǎn), 為其右焦點(diǎn), 是橢圓上異于的動(dòng)點(diǎn),且面積的最大值為.

(1)求橢圓的方程;

(2)直線(xiàn)與橢圓在點(diǎn)處的切線(xiàn)交于點(diǎn),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求證:以 為直徑的圓與直線(xiàn)恒相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案