在如圖所示的幾何體中,四邊形均為全等的直角梯形,且,.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

 

【答案】

(Ⅰ)證明過(guò)程詳見(jiàn)解析;(Ⅱ).

【解析】

試題分析:本題考查線(xiàn)面平行的判定以及二面角的求法.線(xiàn)面平行的判斷:①判定定理:平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;②性質(zhì):如果兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線(xiàn)必平行于另一個(gè)平面;③性質(zhì):如果兩條平行線(xiàn)中的一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面或在這個(gè)平面內(nèi);④性質(zhì):如果一條直線(xiàn)平行于兩個(gè)平行平面中的一個(gè),那么這條直線(xiàn)也平行于另一個(gè)平面或在這個(gè)平面內(nèi);⑤性質(zhì):如果一個(gè)平面和平面外的一條直線(xiàn)都垂直于同一平面,那么這條直線(xiàn)和這個(gè)平面平行.第一問(wèn)是利用線(xiàn)面平行的判定定理證明;第二問(wèn)建立空間直角坐標(biāo)系是關(guān)鍵,利用向量法得到平面的一個(gè)法向量為,和平面的一個(gè)法向量為,再利用夾角公式求夾角的余弦,但是需判斷夾角是銳角還是鈍角,進(jìn)一步判斷余弦值的正負(fù).

試題解析:(Ⅰ)連結(jié),由題意,可知,

故四邊形是平行四邊形,所以

平面,平面,

所以平面.                                    5分

 

(Ⅱ)由題意,兩兩垂直,

軸,軸建立空間直角坐標(biāo)系

設(shè),則,,

設(shè)平面的一個(gè)法向量為

,

,

所以,取

同理,得平面的一個(gè)法向量為

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013103123195729582966/SYS201310312320472086731756_DA.files/image034.png">,又二面角為鈍角,

所以二面角的余弦值.                     12分

考點(diǎn):1.線(xiàn)面平行的判斷定理;2.向量法解題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求證:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點(diǎn).
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點(diǎn)P,使得∠CPD最大?若存在,請(qǐng)求出∠CPD的正切值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線(xiàn)段ED上是否存在點(diǎn)Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點(diǎn). 
(1)求證:CM⊥平面ABDE;
(2)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案