精英家教網(wǎng)如圖,放置的邊長為1的正三角形PAB沿 x軸滾動.設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系式是y=f(x),記f(x)的最小正周期為T;y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積記為S,則S•T=
 
分析:由已知中長為1的正三角形PAB沿 x軸滾動,我們易畫出滾動過程中點P的國軌跡,頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系式是y=f(x),由圖象我們易分析出f(x)的最小正周期T的值,;由其點P的軌跡圖象可以得出其軌跡與X軸所圍成的圖形是一個個相鄰的半圓,即兩零點之間的圖象與X軸圍成的圖形是2個
1
3
圓,由公式計算出面積即可得到答案.
解答:解:由已知中邊長為1的正三角形PAB沿 x軸滾動精英家教網(wǎng)
則滾動二次后,P點的縱坐標和起始位置一樣第三次滾動時以點P為圓心,故點P不動,
故函數(shù)y=f(x)是以3為周期的周期函數(shù),即T=3
兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積如下圖所示:
由圖可知,其兩個零點之間所圍成的面積為以1為半徑的2個
1
3
圓再加上一個邊長為1的正三角形的面積,故其面積是
3
+
3
4
,即S=
3
+
3
4
,
所以S×T=2π+
3
3
4

故答案為:2π+
3
3
4
點評:本題考查的知識點是函數(shù)的圖象及圖象變化,其中根據(jù)已知條件畫出滿足條件的函數(shù)的圖象,是解答本題的關鍵.本題較抽象,其中判斷周期易出錯,要明白研究的函數(shù)是點P的橫縱坐標之間的函數(shù)的關系,如此則不易出錯了
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,放置的邊長為1的正方形PABC沿x軸滾動.設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系是y=f(x),y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積為
π+1
π+1

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省常州市武進區(qū)橫山橋高級中學高三(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

如圖,放置的邊長為1的正三角形PAB沿 x軸滾動.設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系式是y=f(x),記f(x)的最小正周期為T;y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積記為S,則S•T=   

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省常州市武進區(qū)橫山橋高級中學高三(上)期中數(shù)學試卷(文科)(解析版) 題型:填空題

如圖,放置的邊長為1的正三角形PAB沿 x軸滾動.設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系式是y=f(x),記f(x)的最小正周期為T;y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積記為S,則S•T=   

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省蘇州中學高三數(shù)學能力基礎訓練試卷3(解析版) 題型:解答題

如圖,放置的邊長為1的正三角形PAB沿 x軸滾動.設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系式是y=f(x),記f(x)的最小正周期為T;y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積記為S,則S•T=   

查看答案和解析>>

同步練習冊答案