分析:先將分式中的15°化為7°+8°,利用兩角和的余弦、正弦展開(kāi),分子、分母分組提取sin7°,cos7°,再用同角三角函數(shù)的基本關(guān)系式,化簡(jiǎn),然后,就會(huì)求出tan15°,利用兩角差的正切,求解即可.
解答:解:
sin7°+cos15°sin8° |
cos7°-sin15°sin8° |
=sin7°+cos(7°+8°)sin8° |
cos7°-sin(7°+8°)sin8° |
=
sin7°+(cos7°cos8°-sin7°sin8°)sin8° |
cos7°-(sin7°cos8°+sin8°cos7°)sin8° |
=
sin7°+cos7°cos8°sin8°-sin7°sin28° |
cos7°-sin7°sin8°cos8°-sin28°cos7° |
=
sin7°-sin7°sin28°+cos7°cos8°sin8° |
cos7°-sin28°cos7°-sin7°sin8°cos8° |
=
sin7°(1-sin28°)+cos7°cos8°sin8° |
cos7°(1-sin28°)-sin7°sin8°cos8° |
=
sin7°cos8°+cos7°sin8° |
cos7°cos8°-sin7°sin8° |
=
=tan15°=tan(45°-30°)=
tan45°-tan30° |
1+tan45°tan30° |
=
=
2-,
故答案為:
2- 點(diǎn)評(píng):本題考查角的變換,兩角和的正弦、余弦,同角三角函數(shù)的基本關(guān)系式,考查學(xué)生運(yùn)算能力,是中檔題.