3、復(fù)數(shù)z=a+bi(a,b∈R)是方程z2=-3-4i的一個(gè)根,則z等于( 。
分析:把復(fù)數(shù)復(fù)數(shù)z=a+bi代入方程,利用兩個(gè)復(fù)數(shù)相等的條件,解方程組求出a和b的值,即得復(fù)數(shù)z.
解答:解:∵復(fù)數(shù)z=a+bi(a,b∈R)是方程z2=-3-4i的一個(gè)根,
∴a2-b2+2abi=-3-4i,
∴a2-b2=-3,2ab=-4,
∴a=-1,b=2,
∴復(fù)數(shù)z=-1+2i,
故選B.
點(diǎn)評(píng):本題考查復(fù)數(shù)的乘法的運(yùn)算法則,以及兩個(gè)復(fù)數(shù)相等的條件的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知復(fù)數(shù)z=a+bi(a,b∈R),z1=1+i,z2=3-i,且z=z1•z2,則點(diǎn)P(a,b)在( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、下列四個(gè)結(jié)論中正確的個(gè)數(shù)為( 。
①命題“若x2<1,則-1<x<1”的逆否命題是“若x>1或x<-1,則x2>1”
②已知p:?x∈R,sinx≤1,q:若a<b,則am2<bm2,則p∧q為真命題
③命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
④復(fù)數(shù)z=a+bi(a,b∈R)表示純虛數(shù)的充要條件是a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=a+bi(a,b∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為Z(a,b),若|z|=1,則點(diǎn)Z的軌跡是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)是純虛數(shù)”的( 。l件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=a+bi(a,b∈R),若
z
1+i
=2-i
成立,則點(diǎn)P(a,b)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案