分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,利用2Sn=n2+n,能求出an.
(2)由bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和為Tn的取值范圍.
解答 解:(1)∵數(shù)列{an}中,前n項(xiàng)和為Sn,且2Sn=n2+n.
∴n=1時(shí),a1=S1=$\frac{{1}^{2}+1}{2}$=1,
n≥2時(shí),an=Sn-Sn-1=$\frac{{n}^{2}+n}{2}-\frac{(n-1)^{2}+(n-1)}{2}$=n,
n=1時(shí),成立,∴an=n.
(2)∵bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,
∴Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n}{{2}^{n}}$,①
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n}{{2}^{n+1}}$,②
①-②,得:$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}-\frac{n}{{2}^{n+1}}$
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$
=1-$\frac{1}{{2}^{n}}-\frac{n}{{2}^{n+1}}$,
∴Tn=2-$\frac{2+n}{{2}^{n}}$<2.
∵$\frac{2+n}{{2}^{n}}$隨n的增大而減小,∴(Tn)min=T1=2-$\frac{2+1}{2}$=$\frac{1}{2}$,
∴Tn的取值范圍是[$\frac{1}{2}$,2).
點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x-2-2 | B. | y=x-2+2 | C. | y=(x-2)-2 | D. | y=(x+2)-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x≤1} | B. | {x|-1<x≤2} | C. | {x|-1<x<1} | D. | {x|-1<x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不超過19的非負(fù)實(shí)數(shù) | |
B. | 方程x2-64=0在實(shí)數(shù)范圍內(nèi)的解 | |
C. | $\sqrt{5}$的近似值的全體 | |
D. | 某育才中學(xué)2017級(jí)身高超過175cm的同學(xué) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com