已知函數(shù)f(x)=
1
2
sin2x-
3
2
cos2x+1
. 
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若f(x)≥log2t恒成立,求t的取值范圍.
分析:利用兩角差的正弦函數(shù)化簡函數(shù)f(x)=
1
2
sin2x-
3
2
cos2x+1
為:一個(gè)角的一個(gè)三角函數(shù)的形式,(1)然后求出最小正周期以及單調(diào)增區(qū)間.
(2)f(x)≥log2t恒成立,只需求出f(x)的最小值大于log2t,求出t的范圍即可.
解答:解:函數(shù)f(x)=
1
2
sin2x-
3
2
cos2x+1
=sin(2x-
π
3
)+1,
(1)函數(shù)的最小正周期是:π,由2x-
π
3
[2kπ-
π
2
,2kπ+
π
2
],所以x∈[kπ-
π
12
,kπ+
12
],k∈Z,函數(shù)的單調(diào)增區(qū)間為:[kπ-
π
12
,kπ+
12
],k∈Z.
(2)函數(shù)f(x)=sin(2x-
π
3
)+1的最小值為:0,若f(x)≥log2t恒成立,只需0≥log2t恒成立,所以t∈(0,1].
所以t的取值范圍:(0,1].
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的基本性質(zhì),三角函數(shù)的化簡,單調(diào)增區(qū)間、周期、最值的求法,恒成立問題的應(yīng)用,考查計(jì)算能力,邏輯推理能力,常考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案