在△ABC中角A、B、C的對邊分別為a、b、c設(shè)向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.
(Ⅰ)因?yàn)橄蛄?span dealflag="1" mathtag="math" >
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n
,所以,acosA=sinB.--------(1分)
由正弦定理,可得sinAcosA=sinBcosB,即 sin2A=sin2B.--------------(2分)
所以 2A+2B=π,即 A+B=
π
2
.-------(3分)
再由sinA+sinB=
6
2
,以及sinA+sinB=sinA+cosA=
2
sin(A+
π
4
),可得 sin(A+
π
4
)=
3
2
.------(4分)
由于 A為銳角,故有A+
π
4
=
π
3
 或A+
π
4
=
3
,∴A=
π
12
,或
12
.------(6分)
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b,則 x=
a+b
ab
,由正弦定理,得x=
sinA+sinB
2sinAsinB
.-----(8分)
設(shè) sinA+cosA=t,t∈(1,
2
),則 t2=1+2sinAcosA,∴sinAcosA=
t2-1
2
,-----------(10分)
x=
t
t2-1
=
1
t-
1
t
2
,所以實(shí)數(shù)x的取值范圍為(
2
,+∞)
.---------(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中角A,B,C的對邊分別為a,b,c,已知 
sinA•cosB
cosA•sinB
=
2c-b
b
,則cosA=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sinx(cosx-sinx),其中x∈R
(1)求函數(shù)f(x)的最小正周期,并從下列的變換中選擇一組合適變換的序號,經(jīng)過這組變換的排序,可以把函數(shù)y=sin2x的圖象變成y=f(x)的圖象;(要求變換的先后順序)
①縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?span id="j5vvd7p" class="MathJye">
1
2
倍,
②縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,
③橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?span id="r53ffth" class="MathJye">
2
倍,
④橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?span id="blhnrdh" class="MathJye">
2
2
倍,
⑤向上平移一個(gè)單位,⑥向下平移一個(gè)單位,
⑦向左平移
π
4
個(gè)單位,⑧向右平移
π
4
個(gè)單位,
⑨向左平移
π
8
個(gè)單位,⑩向右平移
π
8
個(gè)單位,
(2)在△ABC中角A,B,C對應(yīng)邊分別為a,b,c,f(A)=0,b=4,S△ABC=6,求a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中角A、B、C所對的邊分別為a、b、c,若
sinA
a
=
cosB
b
,則B的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中角A、B、C所對的邊是a、b、c,且a=2bsinA,則角B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函數(shù)f(x)=|
m
|+
m
n
且最小正周期為π,
(1)求函數(shù),f(x)的最大值,并寫出相應(yīng)的x的取值集合;
(2)在△ABC中角A,B,C所對的邊分別為a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

同步練習(xí)冊答案