精英家教網 > 高中數學 > 題目詳情
已知直線l1:(k-3)x+(4-k)y+1=0與l2:2(k-3)x-2y+3=0平行,則k的值是
 
分析:考查題意,不難發(fā)現x=3為所求,然后利用直線平行的條件解答即可.
解答:解:當k=3時兩條直線平行,
當k≠3時有2=-
2
4-k
≠3 所以  k=5

故答案為:3或5.
點評:本題考查直線與直線平行的條件,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

1、已知直線l1:(k-3)x+(5-k)y+1=0與l2:2(k-3)x-2y+3=0垂直,則K的值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則K得值是( 。
A、1或3B、1或5C、3或5D、1或2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1:(k-3)x+(5-k)y+1=0與l2:2(k-3)x-2y+3=0垂直,則k的值是
1或4
1或4

查看答案和解析>>

科目:高中數學 來源:2013年高考數學備考復習卷9:解析幾何初步(解析版) 題型:選擇題

已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則K得值是( )
A.1或3
B.1或5
C.3或5
D.1或2

查看答案和解析>>

同步練習冊答案