函數(shù)y=2cosx(x∈R)是


  1. A.
    周期為2π的奇函數(shù)
  2. B.
    周期為2π的偶函數(shù)
  3. C.
    周期為π的奇函數(shù)
  4. D.
    周期為π的偶函數(shù)
B
分析:根據(jù)余弦函數(shù)y=cosx(x∈R)是周期等于2的偶函數(shù),可得結(jié)論.
解答:由余弦函數(shù)y=cosx(x∈R)的性質(zhì)可得,函數(shù)y=cosx(x∈R)是周期等于2的偶函數(shù),
故函數(shù)y=2cosx(x∈R)也是周期等于2的偶函數(shù),
故選B.
點評:本題主要考查余弦的周期性和奇偶性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2cosx+1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一函數(shù)y=f(x)圖象沿向量
a
=(
π
3
,2)
平移后,得到函數(shù)y=2cosx+1的圖象,則y=f(x)在[0,π]上的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2cosx(x∈R)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2cosx(
3
cosx-sinx)-
3
-2
的圖象F按向量
a
平移到F′,F(xiàn)′的函數(shù)解析式為y=f(x),當y=f(x),為奇函數(shù)時,向量
a
可以等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•濟寧一模)給出下列四個命題:
①命題:“設(shè)a,b∈R,若ab=0,則a=0或b=0”的否命題是“設(shè)a,b∈R,若ab≠0,則a≠0且b≠0”; 
②將函數(shù)y=
2
sin(2x+
π
4
)的圖象上所有點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移
π
4
個單位長度,得到函數(shù)y=
2
cosx的圖象; 
③用數(shù)學歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)時,從“k”到“k+1”的證明,左邊需增添的一個因式是2(2k+1); 
④函數(shù)f(x)=ex-x-1(x∈R)有兩個零點.
其中所有真命題的序號是
①③
①③

查看答案和解析>>

同步練習冊答案