(2x3+
1
x
)
n
的展開式中含有常數(shù)項(xiàng),則最小的正整數(shù)n等于
 
分析:利用二項(xiàng)展開式的通項(xiàng)公式求出二項(xiàng)展開式的通項(xiàng),令x的指數(shù)為0,求出n,r的關(guān)系,求出最小的正整數(shù)n.
解答:解:(2x3+
1
x
)
n
展開式的通項(xiàng)為Tr+1=2n-r
C
r
n
x3n-
7r
2

3n-
7r
2
=0

n=
7r
6
其中r=0,1,2,…n
所以當(dāng)r=6時(shí),最小的正整數(shù)n等于7
故答案為:7
點(diǎn)評(píng):本題考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m=(x-lnx-y,a),
n
=(
1
x
+lnx+15,1),其中a>0,且a≠1,當(dāng)時(shí),y關(guān)于x的函數(shù)關(guān)系式記為y=f(x);
(1)寫出函數(shù)f(x)的解析式,并討論f(x)的單調(diào)性;
(2)設(shè)函數(shù)g(x)=
(-2x3-3ax2-6ax-4a2+6a)   ex,x≤1
e•f(x),x>
1
(e是自然數(shù)的底數(shù)).是否存在正整數(shù)a,使g(x)在[-a,a]上為減函數(shù)?若存在,求出所有滿足條件的正整數(shù)a;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽 題型:填空題

(2x3+
1
x
)
n
的展開式中含有常數(shù)項(xiàng),則最小的正整數(shù)n等于______.

查看答案和解析>>

同步練習(xí)冊(cè)答案