已知是橢圓的左、右焦點(diǎn),過點(diǎn)
傾斜角為的直線交橢圓于兩點(diǎn),
(1)求橢圓的離心率;
(2)若,求橢圓的標(biāo)準(zhǔn)方程.
解:(1)直線的方程為
,消去得, 
設(shè),則① ,    ②,
又由③ ,
由①②得,,

(2)

∴橢圓標(biāo)準(zhǔn)方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左、右焦點(diǎn)分別為、,點(diǎn)在雙曲線的右支上,直線為過且切于雙曲線的直線,且平分,過作與直線平行的直線交點(diǎn),則,利用類比推理:若橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,直線為過且切于橢圓的直線,且平分的外角,過作與直線平行的直線交點(diǎn),則的值為 (     )  
A.B.C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則的值為(   )
A.-6B.6C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖邊長為2的正方形花園的一角是以A為中心,1為半徑的扇形水池.現(xiàn)需在其余部分設(shè)計(jì)一個(gè)矩形草坪PNCQ,其中P是水池邊上任意一點(diǎn),點(diǎn)N、Q分別在邊BC和CD上,設(shè)∠PAB為θ.
(I)用θ表示矩形草坪PNCQ的面積,并求其最小值;
(II)求點(diǎn)P到邊BC和AB距離之比的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)、是直線上任意一點(diǎn),以
焦點(diǎn)的橢圓過點(diǎn).記橢圓離心率關(guān)于的函數(shù)為,那么下列結(jié)論正確的是(  )                                                                                        
A.一一對(duì)應(yīng)B.函數(shù)無最小值,有最大值
C.函數(shù)是增函數(shù)D.函數(shù)有最小值,無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,斜率為的直線過橢圓的上焦點(diǎn)且與橢圓相交于,兩點(diǎn),線段的垂直平分線與軸相交于點(diǎn)
(Ⅰ)求的取值范圍;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


本小題滿分12分)
如圖,已知橢圓C1的中心在原點(diǎn)O,長軸左、右端點(diǎn)M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D.

(1)設(shè),求的比值;
(2)當(dāng)e變化時(shí),是否存在直線l,使得BO∥AN,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸且經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是____;

查看答案和解析>>

同步練習(xí)冊(cè)答案