在△ABC中,若cos(
π
2
-A):sinB:cos(
2
+C)=3:2:4
,則cosC的值為
-
1
4
-
1
4
分析:由題意可得 sinA:sinB:sinC=3:2:4,再由正弦定理可得a:b:c=3:2:4,設a=3x,則b=2x,c=4x,再由余弦定理求得cosC 的值.
解答:解:由題意可得sinA:sinB:sinC=3:2:4,再由正弦定理可得a:b:c=3:2:4.
設a=3x,則b=2x,c=4x.
再由余弦定理可得 cosC=
a2 +b2-c2
2ab
=
9x2+4x2-16x2
12x2
=-
1
4

故答案為 -
1
4
點評:本題主要考查誘導公式、由正弦定理、余弦定理的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量
m
=(2a-c,b)與向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大;
(2)求函數(shù)y=2sin2C+cos(B-2C)的值域;
(3)若AB邊上的中線CO=2,動點P滿足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB邊上的中線CO=4,若動點P滿足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,則(
PA
+
PB
)•
PC
的最小值是
-8
-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在△ABC中,AB邊上的中線CO=4,若動點P滿足數(shù)學公式,則數(shù)學公式的最小值是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在△ABC中,AB邊上的中線CO=4,若動點P滿足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,則(
PA
+
PB
)•
PC
的最小值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年吉林省實驗中學高考數(shù)學二模試卷(文科)(解析版) 題型:填空題

在△ABC中,AB邊上的中線CO=4,若動點P滿足,則的最小值是   

查看答案和解析>>

同步練習冊答案