函數(shù)f(x)=2sin(ωx+
π
4
)cos(ωx+
π
4
)
的圖象與直線y=
1
2
的交點(diǎn)中,距離最近的兩點(diǎn)相距π,則f(x)的最小正周期是( 。
分析:化簡函數(shù)f(x)的解析式為cos2ωx,再根據(jù)它的圖象與直線y=
1
2
的交點(diǎn)中,距離最近的兩點(diǎn)相距π,正好等于
1
3
周期長度,故最小正周期為3π.
解答:解:函數(shù)f(x)=2sin(ωx+
π
4
)cos(ωx+
π
4
)
=sin(2ωx+
π
2
)=cos2ωx 的圖象與直線y=
1
2
的交點(diǎn)中,距離最近的兩點(diǎn)相距π,
正好等于
1
3
周期長度,故最小正周期為3π,
故選A.
點(diǎn)評:本題主要考查二倍角公式、三角函數(shù)的周期性及其求法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

先將函數(shù)f(x)=2sin(2x-
π
6
)
的周期變?yōu)樵瓉淼?倍,再將所得函數(shù)的圖象向右平移
π
6
個(gè)單位,則所得函數(shù)的圖象的解析式為(  )
A、f(x)=2sinx
B、f(x)=2sin(
1
2
x-
π
4
)
C、f(x)=2sin4x
D、f(x)=2sin(4x-
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(
1
2
x-
π
4
)
,(x∈R)則f(x)的最小正周期為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2sin(2x+
π
3
)(x∈[0,100π])
,則函數(shù)f(x)的周期( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)+1

(1)求f(x)的最小正周期及振幅;
(2)試判斷f(
π
6
-x)
f(
π
6
+x)
的大小關(guān)系,并說明理由.
(3)若x∈[-
π
6
π
3
]
,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德陽三模)已知函數(shù)f(x)=2sinωx(cosωx-
3
sinωx)+
3
(ω>0)
的最小正周期為π.
(1)求f(x)的單調(diào)減區(qū)間;
(2)若f(θ)=
2
3
,求sin(
6
-4θ)
的值.

查看答案和解析>>

同步練習(xí)冊答案