【題目】由經(jīng)驗(yàn)得知,在某商場付款處排隊等候付款的人數(shù)及概率如表:

排隊人數(shù)

人以上

概率

(1)至多有人排隊的概率是多少?

(2)至少有人排隊的概率是多少?

【答案】(1)0.56(2)0.74

【解析】分析:(1)“至多2人排隊”是“沒有人排隊”,“1人排隊”,“2人排隊”三個事件的和事件,三個事件彼此互斥,利用互斥事件的概率公式求出“至多2人排隊”的概率;

(2)“至少2人排隊”與“少于2人排隊”是對立事件,“少于2人排隊”是“沒有人排隊”,“1人排隊”兩個事件的和事件,這兩個事件彼此互斥,利用互斥事件的概率公式求出“少于2人排隊”的概率;再利用對立事件的概率公式求出“至少2人排隊”的概率.

詳解:(1)記沒有人排隊為事件A,1人排隊為事件B.2人排隊為事件C,A、B、C彼此互斥.所以P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56;

(2)記至少2人排隊為事件D,少于2人排隊為事件A+B,那么事件D與A+B是對立事件,

則P(D)=P()=1﹣(P(A)+P(B))=1﹣(0.1+0.16)=0.74.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知當(dāng) 時,函數(shù) 的圖象與 的圖象有且只有一個交點(diǎn),則正實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系 中,傾斜角為 的直線 過點(diǎn) ,以原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 .
(1)寫出直線 的參數(shù)方程( 為常數(shù))和曲線 的直角坐標(biāo)方程;
(2)若直線 交于 、 兩點(diǎn),且 ,求傾斜角 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求實(shí)數(shù)的值;

(2)若不等式對一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對函數(shù)的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:

①函數(shù)上單調(diào)遞增,在上單調(diào)遞減;

②點(diǎn)是函數(shù)圖像的一個對稱中心;

③存在常數(shù),使對一切實(shí)數(shù)均成立;

④函數(shù)圖像關(guān)于直線對稱.其中正確的結(jié)論是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,且將全班人的成績記為由右邊的程序運(yùn)行后,輸出.據(jù)此解答如下問題:

注:圖中表示“是”,表示“否”

(1)求莖葉圖中破損處分?jǐn)?shù)在,,各區(qū)間段的頻數(shù);

(2)利用頻率分布直方圖估計該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 中, ,點(diǎn) 的中點(diǎn), 為線段 (端點(diǎn)除外)上一動點(diǎn).現(xiàn)將 沿 折起,使得平面 平面 .設(shè)直線 與平面 所成角為 ,則 的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明家訂了一份報紙,送報人可能在早上6 : 30至7 : 30之間把報紙送到小明家,小明離開家去上學(xué)的時間在早上7 : 00至8 : 30之間,問小明在離開家前能得到報紙(稱為事件)的概率是多少( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C: 的右頂點(diǎn)為A,離心率為e,且橢圓C過點(diǎn) ,以AE為直徑的圓恰好經(jīng)過橢圓的右焦點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l(直線l不過原點(diǎn)且斜率存在)與橢圓C交于P,Q兩個不同的點(diǎn),且△OPQ的面積S=1,若N為線段PQ的中點(diǎn),問:在x軸上是否存在兩個定點(diǎn)E1 , E2 , 使得直線NE1與NE2的斜率之積為定值?若存在,求出E1 , E2的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案