i()=( )

A.           B.           C.         D.

 

【答案】

B

【解析】

試題分析:根據(jù)題意 ,由于i=-1,則可知i()=i-=,故可知答案為B.

考點:復(fù)數(shù)的運(yùn)算

點評:解決的關(guān)鍵是利用復(fù)數(shù)的運(yùn)算法則來求解,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如下表,在相應(yīng)各前提下,滿足p是q的充分不必要條件所對應(yīng)的序號有
 
(填出所有滿足要求的序號).
序號 前提 p q
在區(qū)間I上函數(shù)f(x)的最小值為m,g(x)的最大值為n m>n f(x)>g(x)在區(qū)
間I上恒成立
函數(shù)f(x)的導(dǎo)函數(shù)為f′(x) f′(x)>0在區(qū)間I上恒成立 f(x) 在區(qū)間I
上單調(diào)遞增
A、B為△ABC的兩內(nèi)角 A>B sinA>sinB
兩平面向量
a
b
a
b
<0
a
、
b
的夾角為鈍角
直線l1:A1x+B1y+C1=0l2:A2x+B2y+C2=0
A1B2=A2B1
B1C2≠B2C1
l1∥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1+i,若z2+az+b=1-i,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(-1,2),又點A(8,0),B(-8,t),C(8sinθ,t).
(I)若
AB
a
求向量
OB
的坐標(biāo);
(Ⅱ)若向量
AC
與向量
a
共線,當(dāng)tsinθ取最大值時,求
OA
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(I)已知
a
=(1,2),求與
a
平行且反向的單位向量坐標(biāo);
(Ⅱ)已知|
a
|=5,|
b
|=4,
a
b
的夾角為60°,如果(k
a
-
b
⊥(
a
+2
b
)
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)|
i
|=|
j
|=|
k
|=1,且
i
j
=0,
j
k
=0,
k
i
=0,若
a
=
i
+2
j
+3
k
,
b
=-2
i
+3
j
-4
k
c
=4
i
+
j
-
k
,則|
a
+
b
+
c
|=
7
7

查看答案和解析>>

同步練習(xí)冊答案