分析 (1)由題意可知:離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,即a=$\sqrt{2}$c,a2=2c2,由a2=b2+c2,a2=2b2,由a2=2b,即可求得a和b的值,即可求得橢圓的方程;
(2)設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)為M(x0,y0),將直線方程代入橢圓方程,由△>0,即可求得m的取值范圍,由韋達(dá)定理及中點(diǎn)坐標(biāo)公式,求得AB的中點(diǎn)M的坐標(biāo),代入圓x2+y2=5即可求得m的值,由m=±3,與m2<3矛盾,故實(shí)數(shù)m不存在.
解答 解:(1)由橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)焦點(diǎn)在x軸上,
離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,即a=$\sqrt{2}$c,a2=2c2,
由a2=b2+c2,
∴a2=2b2,
由a2=2b.
∴b=1,a2=2,
橢圓的方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)為M(x0,y0).
∴$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:3x2+2mx+m2-2=0,
∴△=(2m)2-4×3×(m2-2)>0,即m2<3,
由韋達(dá)定理可知:x1+x2=-$\frac{2m}{3}$,
∴x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{m}{3}$,y0=x0+m=$\frac{2m}{3}$,
即M(-$\frac{m}{3}$,$\frac{m}{3}$).
∵線段AB的中點(diǎn)M點(diǎn)在圓x2+y2=5上,
可得(-$\frac{m}{3}$)2+($\frac{m}{3}$)2=5,
解得:m=±3,與m2<3矛盾.
故實(shí)數(shù)m不存在.
點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理和中點(diǎn)坐標(biāo)公式,考查存在性問(wèn)題的解法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,2] | B. | [-2,2]∪[4,+∞) | C. | [-2,2+$\sqrt{2}$] | D. | [-2,2+$\sqrt{2}$]∪[4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ¬p | B. | ¬p∨q | C. | p∧q | D. | p∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com