【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是(
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }

【答案】D
【解析】解:設(shè)平面AD1E與直線BC交于點(diǎn)G,連接AG、EG,則G為BC的中點(diǎn) 分別取B1B、B1C1的中點(diǎn)M、N,連接AM、MN、AN,則
∵A1M∥D1E,A1M平面D1AE,D1E平面D1AE,
∴A1M∥平面D1AE.同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN內(nèi)的相交直線
∴平面A1MN∥平面D1AE,
由此結(jié)合A1F∥平面D1AE,可得直線A1F平面A1MN,即點(diǎn)F是線段MN上上的動(dòng)點(diǎn).
設(shè)直線A1F與平面BCC1B1所成角為θ
運(yùn)動(dòng)點(diǎn)F并加以觀察,可得
當(dāng)F與M(或N)重合時(shí),A1F與平面BCC1B1所成角等于∠A1MB1 , 此時(shí)所成角θ達(dá)到最小值,滿足tanθ= =2;
當(dāng)F與MN中點(diǎn)重合時(shí),A1F與平面BCC1B1所成角達(dá)到最大值,滿足tanθ= =2
∴A1F與平面BCC1B1所成角的正切取值范圍為[2,2 ]
故選:D

設(shè)平面AD1E與直線BC交于點(diǎn)G,連接AG、EG,則G為BC的中點(diǎn).分別取B1B、B1C1的中點(diǎn)M、N,連接AM、MN、AN,可證出平面A1MN∥平面D1AE,從而得到A1F是平面A1MN內(nèi)的直線.由此將點(diǎn)F在線段MN上運(yùn)動(dòng)并加以觀察,即可得到A1F與平面BCC1B1所成角取最大值、最小值的位置,由此不難得到A1F與平面BCC1B1所成角的正切取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,其公差為﹣2,且a7是a3與a9的等比中項(xiàng),Sn為{an}的前n項(xiàng)和,n∈N* , 則S10的值為(
A.﹣110
B.﹣90
C.90
D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為.過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),若, ,且的周長(zhǎng)為.

(1)求橢圓的方程;

(2) 設(shè)橢圓在點(diǎn)處的切線記為直線,點(diǎn)上的射影分別為,過(guò)的垂線交軸于點(diǎn),試問(wèn)是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平等因素的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,次品數(shù)P(萬(wàn)件)與日產(chǎn)量x(萬(wàn)件)之間滿足關(guān)系: 已知每生產(chǎn)l萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每生產(chǎn)l萬(wàn)件次品將虧損1萬(wàn)元.(利潤(rùn)=盈利一虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤(rùn)T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)工廠將這種儀器的元件的日產(chǎn)量x定為多少時(shí)獲得的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(1)寫(xiě)出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式組 表示的平面區(qū)域?yàn)镈,則
(1)z=x2+y2的最小值為
(2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購(gòu)物量

14

58

912

1316

17件及以上

顧客數(shù)(人)

x

30

25

y

10

結(jié)算時(shí)間(分鐘/人)

1

1.5

2

2.5

3

已知這100位顧客中一次購(gòu)物量超過(guò)8件的顧客占55%

)確定x,y的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;

)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過(guò)2.5分鐘的概率.

(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中 (為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)討論函數(shù)的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若函數(shù)對(duì)任意都成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案