(本題滿分14分)

已知數(shù)列滿足

(Ⅰ)證明:數(shù)列為等比數(shù)列;

(Ⅱ)求數(shù)列的通項以及前n項和;

(Ⅲ)如果對任意的正整數(shù)都有的取值范圍。

 

【答案】

(Ⅰ)見解析(Ⅱ),(Ⅲ)

【解析】

試題分析:(Ⅰ)證明:由

 

所以數(shù)列為等比數(shù)列且首項為2,公比為2.                                     …4分

(Ⅱ)由(Ⅰ)得= 所以

 利用分組求和可得:                                 …9分

(Ⅲ)由,得  (10分)

則 

當(dāng),當(dāng)

綜合,得:當(dāng)時,),即時,,

所以為單調(diào)遞增數(shù)列,故,即所求的取值范圍是 .            …14分

考點:本小題主要考查等比數(shù)列的證明、構(gòu)造新數(shù)列、用函數(shù)的觀點考查數(shù)列的單調(diào)性、恒成立問題求參數(shù)的值以及數(shù)列中的基本計算問題,考查學(xué)生分析問題、解決問題的能力和轉(zhuǎn)化思想的應(yīng)用.

點評:要證明等差或等比數(shù)列,只能用定義或等差、等比數(shù)列的中項,恒成立問題一般轉(zhuǎn)化為求最值問題解決,而數(shù)列是一種特殊的函數(shù),可以用函數(shù)的觀點考查數(shù)列的單調(diào)性進(jìn)而求最值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案