設(shè)數(shù)列,的前n項的為Sn,則Sn等于( )
A.
B.
C.
D.
【答案】分析:化簡通項=,問題即容易解.
解答:解:∵=,∴Sn=()+()+…+()=
故選C.
點評:本題考查裂項法數(shù)列求和,將通項裂成差式形式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,
Sn
n
)都在函數(shù)f(x)=x+
an
2x
的圖象上.
(1)求a1,a2,a3的值,猜想an的表達式,并證明你的猜想.
(2)設(shè)An為數(shù)列{
an-1
an
}的前n項積,是否存在實數(shù)a,使得不等式An
an+1
<f(a)-
an+3
2a
對一切n∈N*都成立?若存在,求出a的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高二數(shù)學(xué) 教學(xué)與測試 題型:044

設(shè)數(shù)列{}的前n項的和=1+·lgb,求能使=1成立的b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:衡陽模擬 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,
Sn
n
)都在函數(shù)f(x)=x+
an
2x
的圖象上.
(1)求a1,a2,a3的值,猜想an的表達式,并證明你的猜想.
(2)設(shè)An為數(shù)列{
an-1
an
}的前n項積,是否存在實數(shù)a,使得不等式An
an+1
<f(a)-
an+3
2a
對一切n∈N*都成立?若存在,求出a的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省東莞市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

形如的式子叫做二行二列矩陣,定義矩陣的一種運算 =.該運算的幾何意義為平面上的點(x,y)在矩陣的作用下變換成點(ax+by,cx+dy).
(1)設(shè)點M(-2,1)在的作用下變換成點M′,求點M′的坐標;
(2)設(shè)數(shù)列{an} 的前n項和為Sn ,且對任意正整數(shù)n,點A(Sn,n)在的作用下變換成的點A′在函數(shù)f(x)=x2+x的圖象上,求an的表達式;
(3)在(2)的條件下,設(shè)bn為數(shù)列{1-}的前n項的積,是否存在實數(shù)a使得不等式對一切n∈N*都成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案