已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且>2(其中O為原點(diǎn)),求k的取值范圍.
解:(1)設(shè)雙曲線方程為=1(a>0,b>0). 由已知得a=,c=2,于是a2+b2=22,b2=1,故雙曲線C的方程為-y2=1. (2)將y=kx+代入-y2=1得(1-3k2)x2-kx-9=0. 由直線l與雙曲線交于不同的兩點(diǎn)得 即k2≠且k2<1 ① 設(shè)A(xA,yA),B(xB,yB),則xA+xB=,xAxB=. 由>2得xAxB+yAyB>2. 而xAxB+yAyB=xAxB+(kxA+)(kxB+) =(k2+1)xAxB+k(xA+xB)+2 。(k2+1). 于是>2,即>0,解得<k2<3 ② 由①②得<k2<1,故k的取值范圍為(-1,)∪(,1). 思路解析:對(duì)于第一問,只要利用雙曲線的標(biāo)準(zhǔn)方程中的a、b、c間的關(guān)系不難將問題解決;對(duì)于第二問,聯(lián)立直線與雙曲線的方程,消去其中的一個(gè)未知數(shù),再由根與系數(shù)間的關(guān)系,從而將問題解決. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).
(1)求雙曲線C的方程;
(2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說明該軌跡是什么曲線。
(3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com