分析 (1)求出BC的斜率,帶入點斜式方程即可;(2)求出AC的長,根據(jù)AC的方程,求出點B到直線AC的距離,從而求出三角形ABC的面積即可.
解答 解:(1)因為點B(4,6),C(0,8),則kBC=$\frac{8-6}{0-4}$=-$\frac{1}{2}$,
因為l⊥BC,則l的斜率為2.
又直線l過點A,所以直線l的方程為y=2(x-3),即2x-y-6=0.
(2)因為點A(3,0),C(0,8),則|AC|=$\sqrt{9+64}$=$\sqrt{73}$,
又直線AC的方程為$\frac{x}{3}$+$\frac{y}{8}$=1,即8x+3y-24=0,
則點B到直線AC的距離d=$\frac{32+18-24}{\sqrt{64+9}}$=$\frac{26}{\sqrt{73}}$,
所以△ABC的面積S=$\frac{1}{2}$|AC|×d=13.
點評 本題考查了求直線方程問題,考查考查點到直線的距離公式,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一、三象限角 | B. | 第二、四象限角 | C. | 第二、三象限角 | D. | 第一、四象限角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | $\frac{1}{84}$ | D. | $\frac{1}{251}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com