3.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且$\frac{c}$+$\frac{c}$=$\frac{5cosA}{2}$,則$\frac{tanA}{tanB}$+$\frac{tanA}{tanC}$等于$\frac{1}{2}$.

分析 由已知可得$\frac{{c}^{2}+^{2}}{bc}$=$\frac{5cosA}{2}$①,由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$②,解得:b2+c2=5a2,代入①可得cosA=$\frac{2{a}^{2}}{bc}$③,由正弦定理及同角三角函數(shù)基本關(guān)系的運(yùn)用化簡所求即可得解.

解答 解:∵$\frac{c}$+$\frac{c}$=$\frac{{c}^{2}+^{2}}{bc}$=$\frac{5cosA}{2}$①,由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$②,
∴$\frac{^{2}+{c}^{2}-{a}^{2}}{2}$=$\frac{2({c}^{2}+^{2})}{5}$,解得:b2+c2=5a2,代入①可得cosA=$\frac{2{a}^{2}}{bc}$③,
∵由正弦定理可得:a=2RsinA,b=2RsinB,c=2RsinC,
∴在銳角△ABC中,$\frac{tanA}{tanB}$+$\frac{tanA}{tanC}$=$\frac{sinAcosB}{cosAsinB}+\frac{sinAcosC}{cosAsinC}$=$\frac{sinAcosBsinC+sinAsinBcosC}{cosAsinBsinC}$=$\frac{si{n}^{2}A}{cosAsinBsinC}$=$\frac{{a}^{2}}{bc•cosA}$=$\frac{{a}^{2}}{bc×\frac{2{a}^{2}}{bc}}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系的運(yùn)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求函數(shù)f(x)=-x2+|x|的單調(diào)區(qū)間,并求函數(shù) f(x)在[-1,2]上的最大、小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.不等式組$\left\{\begin{array}{l}{|x|=x}\\{\frac{3-x}{3+x}>|\frac{2-x}{2+x}|}\end{array}\right.$的解集是( 。
A.{0|0<x<2}B.{x|0<x<$\sqrt{6}$}C.{x|0<x<2.5}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知定義在R上的函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱,且當(dāng)x>0時,f(x)=x3-x2.求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若f(x)=arctan$\frac{2-2x}{1+4x}$+C在(-$\frac{1}{4}$,$\frac{1}{4}$)上是奇函數(shù),求C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在四面體ABCD中,三組對棱兩兩相等,分別為$\sqrt{13}$,$\sqrt{10}$,$\sqrt{5}$,則該四面體外接球的表面積為14π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x+8-$\frac{a}{x}$)在區(qū)間[1,+∞)單調(diào)遞減,則實(shí)數(shù)a的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}中,an=4n+1,則Sn=( 。
A.n2B.n2+nC.2n2+3nD.n2+$\frac{5}{2}n$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知全集U=R,A={y|y=x2-2x-1},B={x|y=$\frac{\sqrt{x-1}}{\sqrt{2-x}}$},求:
(1)A∩B;
(2)∁U(A∪B);
(3)∁UA∩B.

查看答案和解析>>

同步練習(xí)冊答案