判斷下列函數(shù)的奇偶性:
(1)f(x)=x3-;
(2)f(x)=;
(3)f(x)=(x-1);
(4)f(x)=.
(1)奇函數(shù)(2)奇函數(shù)(3)既不是奇函數(shù)也不是偶函數(shù)(4)既是奇函數(shù)也是偶函數(shù)
【解析】(1)定義域是(-∞,0)∪(0,+∞),關(guān)于原點(diǎn)對稱,由f(-x)=-f(x),所以f(x)是奇函數(shù).
(2)去掉絕對值符號,根據(jù)定義判斷.由得.
故f(x)的定義域為[-1,0)∪(0,1],關(guān)于原點(diǎn)對稱,且有x+2>0.
從而有f(x)=,
這時有f(-x)==-f(x),故f(x)為奇函數(shù).
(3)因為f(x)定義域為[-1,1),所以f(x)既不是奇函數(shù)也不是偶函數(shù).
(4)因為f(x)定義域為{-,},所以f(x)=0,則f(x)既是奇函數(shù)也是偶函數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第8課時練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=(a2-1)x是R上的減函數(shù),則a的取值范圍是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第5課時練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=若|f(x)|≥ax,則a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時練習(xí)卷(解析版) 題型:填空題
定義在R上的函數(shù)f(x)滿足f(x)=則f(2014)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時練習(xí)卷(解析版) 題型:解答題
已知奇函數(shù)f(x)的定義域為[-2,2],且在區(qū)間[-2,0]內(nèi)遞減,若f(1-m)+f(1-m2)<0,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=mx2+(2m-1)x+1是偶函數(shù),則實數(shù)m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=的定義域為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時練習(xí)卷(解析版) 題型:填空題
關(guān)于函數(shù)f(x)=lg(x>0,x∈R),下列命題正確的是________.(填序號)
①函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
②在區(qū)間(-∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)y=f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)y=f(x)是增函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com