15.某校從參加高二年級(jí)數(shù)學(xué)競(jìng)賽考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)分成六段,然后畫(huà)出如圖所示部分頻率分布直方圖.觀(guān)察圖形的信息,回答下列問(wèn)題:
(1)求第四個(gè)小組的頻率以及頻率分布直方圖中第四個(gè)小矩形的高;
(2)估計(jì)這次考試的及格率(60分及60分以上為及格)和平均分.

分析 (1)第四小組分?jǐn)?shù)在[70,80)內(nèi)的頻率為,即可求出第四個(gè)小矩形的高,
(2)同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,將中點(diǎn)值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分

解答 解:(1)第四小組分?jǐn)?shù)在[70,80)內(nèi)的頻率為:
1-(0.005+0.01+0.015+0.015+0.025)×10=0.30 則第四個(gè)小矩形的高為=0.03,
(2)由題意60分以上的各組頻率和為:(0.015+0.03+0.025+0.005)×10=0.75,
故這次考試的及格率約為75%,
由45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,
得本次考試中的平均分約為71:

點(diǎn)評(píng) 本題主要考查了頻率及頻率分布直方圖,以及平均數(shù)的有關(guān)問(wèn)題,考查運(yùn)用統(tǒng)計(jì)知識(shí)解決簡(jiǎn)單實(shí)際問(wèn)題的能力,數(shù)據(jù)處理能力和運(yùn)用意識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)常數(shù)a∈R,函數(shù)f(x)=|x-1|+|x2-a|,若f(2)=1,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.圓柱的側(cè)面展開(kāi)圖是邊長(zhǎng)分別為4π、1的矩形,則該圓柱的體積為4π或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)當(dāng)a=0時(shí),判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某校從參加高二年級(jí)數(shù)學(xué)競(jìng)賽考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù),滿(mǎn)分100分)分成六段,然后畫(huà)出如圖所示部分頻率分布直方圖.觀(guān)察圖形的信息,回答下列問(wèn)題:
(1)求第四小組的頻率以及頻率分布直方圖中第四小矩形的高;
(2)估計(jì)這次考試的及格率(60分及60分以上為及格)和平均分;
(3)把從分?jǐn)?shù)段的學(xué)生組成C組,現(xiàn)從B,C兩組中選兩人參加科普知識(shí)競(jìng)賽,求這兩個(gè)學(xué)生都來(lái)自C組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在圓的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,則圓的位置滿(mǎn)足( 。
A.截兩坐標(biāo)軸所得弦的長(zhǎng)度相等B.與兩坐標(biāo)軸都相切
C.與兩坐標(biāo)軸相離D.上述情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個(gè)五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在$\widehat{AB}$上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.二手車(chē)經(jīng)銷(xiāo)商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車(chē)的使用年數(shù)x(0<x≤10)與銷(xiāo)售價(jià)格y(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù)246810
售價(jià)16139.574.5
(1)若這兩個(gè)變量呈線(xiàn)性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線(xiàn)方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收購(gòu)使用年限不超過(guò)10年的二手車(chē),且每輛該型號(hào)汽車(chē)的收購(gòu)價(jià)格為ω=0.03x2-1.81x+16.2萬(wàn)元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),小王銷(xiāo)售一輛該型號(hào)汽車(chē)所獲得的利潤(rùn)L(x)最大?
(銷(xiāo)售一輛該型號(hào)汽車(chē)的利潤(rùn)=銷(xiāo)售價(jià)格-收購(gòu)價(jià)格)
參考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)是定義在[0,+∞)上的增函數(shù),則滿(mǎn)足不等式f(2x-1)<f($\frac{1}{3}$)的實(shí)數(shù)x的取值范圍是(  )
A.(-∞,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案