已知拋物線C的一個(gè)焦點(diǎn)為F(,0),對(duì)應(yīng)于這個(gè)焦點(diǎn)的準(zhǔn)線方程為x=-.
(1)寫(xiě)出拋物線C的方程;
(2)過(guò)F點(diǎn)的直線與曲線C交于A、B兩點(diǎn),O點(diǎn)為坐標(biāo)原點(diǎn),求△AOB重心G的軌跡方程;
(3)點(diǎn)P是拋物線C上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓(x-3)2+y2=2的切線,切點(diǎn)分別是M,N.當(dāng)P點(diǎn)在何處時(shí),|MN|的值最小?求出|MN|的最小值.
(1)y2=2x.(2)y2= (3)當(dāng)P點(diǎn)坐標(biāo)為(2,±2)時(shí),|MN|取最小值.
(1)拋物線方程為:y2=2x. (4分)
(2)①當(dāng)直線不垂直于x軸時(shí),設(shè)方程為y=k(x-),代入y2=2x,
得:k2x2-(k2+2)x+.
設(shè)A(x1,y1),B(x2,y2),則x1+x2=,y1+y2=k(x1+x2-1)=.
設(shè)△AOB的重心為G(x,y)則,
消去k得y2=為所求, (6分)
②當(dāng)直線垂直于x軸時(shí),A(,1),B(,-1), (8分)
△AOB的重心G(,0)也滿足上述方程.
綜合①②得,所求的軌跡方程為y2=, (9分)
(3)設(shè)已知圓的圓心為Q(3,0),半徑r=,
根據(jù)圓的性質(zhì)有:|MN|=2. (11分)
當(dāng)|PQ|2最小時(shí),|MN|取最小值,
設(shè)P點(diǎn)坐標(biāo)為(x0,y0),則y=2x0.
|PQ|2=(x0-3)2+ y= x-4x0+9=(x0-2)2+5,
∴當(dāng)x0=2,y0=±2時(shí),|PQ|2取最小值5,
故當(dāng)P點(diǎn)坐標(biāo)為(2,±2)時(shí),|MN|取最小值. (14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線C的一個(gè)焦點(diǎn)為F(,0),對(duì)應(yīng)于這個(gè)焦點(diǎn)的準(zhǔn)線方程為x=-.
(1)寫(xiě)出拋物線C的方程;
(2)過(guò)F點(diǎn)的直線與曲線C交于A、B兩點(diǎn),O點(diǎn)為坐標(biāo)原點(diǎn),求△AOB重心G的軌跡方程;
(3)點(diǎn)P是拋物線C上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓(x-3)2+y2=2的切線,切點(diǎn)分別是M,N.當(dāng)P點(diǎn)在何處時(shí),|MN|的值最?求出|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年新疆烏魯木齊一中高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com