若方程x2+ky2=2表示焦點在x軸上的橢圓,則實數(shù)k的取值范圍為(   )     
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)
C
方程x2+ky2=2可化為=1,因為其表示焦點在x軸上的橢圓,所以,所以。故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線,當(dāng)變化時,直線被橢圓截得的最大弦長是(     )
A.4B.2C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的左焦點,是橢圓短軸上的一個頂點,橢圓的離心率為,點軸上,,三點確定的圓恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過作斜率為的直線交橢圓于兩點,為線段的中點,設(shè)為橢圓中心,射線交橢圓于點,若,若存在求的值,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左焦點為, 點在橢圓上, 若線段的中點軸上, 則
A.B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)分別為橢圓C:的左右兩個焦點,橢圓上的點)到兩點的距離之和等于4,設(shè)點
(1)求橢圓的方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓:的右焦點為,離心率為.
(Ⅰ)求橢圓的方程及左頂點的坐標(biāo);
(Ⅱ)設(shè)過點的直線交橢圓兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓的標(biāo)準(zhǔn)方程為.
(1)求橢圓的長軸和短軸的大小;
(2)求橢圓的離心率;
(3)求以此橢圓的長軸端點為短軸端點,并且經(jīng)過點P(-4,1)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線,兩焦點為,過軸的垂線交雙曲線于兩點,且內(nèi)切圓的半徑為,則此雙曲線的離心率為  ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點的直線與橢圓交于,線段的中點為,設(shè)直線的斜率為,直線的斜率為,則的值為           

查看答案和解析>>

同步練習(xí)冊答案