若方程
x2+ky
2=2表示焦點在x軸上的橢圓,則實數(shù)k的取值范圍為( )
A.(0,+∞) | B.(0,2) | C.(1,+∞) | D.(0,1) |
方程
x2+ky
2=2可化為
=1,因為其表示焦點在x軸上的橢圓,所以
,所以
。故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線
,當(dāng)
變化時,直線被橢圓
截得的最大弦長是( )
A.4 | B.2 | C. | D.不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是橢圓
的左焦點,
是橢圓短軸上的一個頂點,橢圓的離心率為
,點
在
軸上,
,
三點確定的圓
恰好與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過
作斜率為
的直線
交橢圓于
兩點,
為線段
的中點,設(shè)
為橢圓中心,射線
交橢圓于點
,若
,若存在求
的值,若不存在則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的左焦點為
, 點
在橢圓上, 若線段
的中點
在
軸上, 則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)設(shè)
分別為橢圓C:
的左右兩個焦點,橢圓上的點
(
)到
兩點的距離之和等于4,設(shè)點
。
(1)求橢圓的方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓
:
的右焦點為
,離心率為
.
(Ⅰ)求橢圓
的方程及左頂點
的坐標(biāo);
(Ⅱ)設(shè)過點
的直線交橢圓
于
兩點,若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)已知橢圓的標(biāo)準(zhǔn)方程為
.
(1)求橢圓的長軸和短軸的大小;
(2)求橢圓的離心率;
(3)求以此橢圓的長軸端點為短軸端點,并且經(jīng)過點P(-4,1)的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
,兩焦點為
,過
作
軸的垂線交雙曲線于
兩點,且
內(nèi)切圓的半徑為
,則此雙曲線的離心率為
▲ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
過點
的直線
與橢圓
交于
,線段
的中點為
,設(shè)直線
的斜率為
,直線
的斜率為
,則
的值為
查看答案和解析>>