函數(shù)在點P(2,1)處的切線方程為    
【答案】分析:欲判在點P(2,1)處的切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=2處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
解答:解:∵函數(shù),
∴y′=x,
∴在點P(2,1)處的切線的斜率為:
k=1,
∴在點P(2,1)處的切線方程為:
y-1=1×(x-2)
即:x-y-1=0.
故答案為:x-y-1=0.
點評:本小題主要考查利用導(dǎo)數(shù)研究曲線上某點切線方程、切線的斜率、直線的方程等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x24
在點P(2,1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) f(x)的導(dǎo)數(shù).f′(x)=3x2-3ax,f(0)=b,a,b為實數(shù),1<a<2.
(1) 若f(x)在區(qū)間_[-1,1]_上的最小值、最大值分別為-2、1,求a,b的值;
(2) 在(1)的條件下,求曲線在點P(2,1)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都市樹德中學(xué)高三(下)入學(xué)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù) f(x)的導(dǎo)數(shù).f′(x)=3x2-3ax,f(0)=b,a,b為實數(shù),1<a<2.
(1) 若f(x)在區(qū)間_[-1,1]_上的最小值、最大值分別為-2、1,求a,b的值;
(2) 在(1)的條件下,求曲線在點P(2,1)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市西南師大附中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知函數(shù) f(x)的導(dǎo)數(shù).f′(x)=3x2-3ax,f(0)=b,a,b為實數(shù),1<a<2.
(1) 若f(x)在區(qū)間_[-1,1]_上的最小值、最大值分別為-2、1,求a,b的值;
(2) 在(1)的條件下,求曲線在點P(2,1)處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案