求一條漸近線方程是3x+4y=0,一個(gè)焦點(diǎn)是(4,0)的雙曲線標(biāo)準(zhǔn)方程,并求此雙曲線的離心率.

答案:
解析:

  解:∵c=4,且由漸近線方程知,

  ∴

  ∴所求雙曲線方程為,離心率e=


提示:

本題考查雙曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì),由漸近線方程與雙曲線方程之間關(guān)系,利用待定系數(shù)法求解.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一條漸近線方程是x-2y=0,且過點(diǎn)P(4,3),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求離心率e=
6
3
,且過點(diǎn)(3,0),焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程.
(2)雙曲線C與4x2+y2=1有相同的焦點(diǎn),它的一條漸近線方程是y=
2
x
,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C是中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的右支,已知它的右準(zhǔn)線方程為l:x=
1
2
,一條漸近線方程是y=
3
x
,線段PQ是過曲線C右焦點(diǎn)F的一條弦,R是弦PQ的中點(diǎn).
(1)求曲線C的方程;
(2)當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求點(diǎn)R到y(tǒng)軸距離的最小值;
(3)若在直線l的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足
PS
QS
=0.當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的曲線的標(biāo)準(zhǔn)方程:
(1)a=6,c=3,焦點(diǎn)在y軸上的橢圓
(2)過點(diǎn)M(
2
,1)
,且焦點(diǎn)為F1(-
2
,0)
的橢圓
(3)一條漸近線方程是3x+4y=0,一個(gè)焦點(diǎn)是(5,0)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:海南省瓊海市嘉積中學(xué)2011-2012學(xué)年高二上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)(二)數(shù)學(xué)理科試題 題型:044

求一條漸近線方程是3x+4y=0,且過點(diǎn)(,3)的雙曲線的標(biāo)準(zhǔn)方程,并求此雙曲線的離心率.

查看答案和解析>>

同步練習(xí)冊(cè)答案