如圖所示,F(xiàn)為雙曲線C:-=1的左焦點,雙曲線C上的點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱,則|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|的值是( )

A.9
B.16
C.18
D.27
【答案】分析:首先設(shè)右焦點為F′,由點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱以及雙曲線的對稱性得出|FP1|=|F′P6|,|FP2|=|F′P5|,|FP3|=|F′P4|,然后根據(jù)雙曲線的定義得出|F′P6|-|P6F|=2a=6,|F′P5|-|P5F|=2a=6,|F′P4|-|P4F|=2a=6,進而求出結(jié)果.
解答:解:設(shè)右焦點為F′,
∵雙曲線C上的點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱   
∴P1和P6,P2和P5,P3和P4分別關(guān)于y軸對稱
∴|FP1|=|F′P6|,|FP2|=|F′P5|,|FP3|=|F′P4|,
∵|F′P6|-|P6F|=2a=6,|F′P5|-|P5F|=2a=6,|F′P4|-|P4F|=2a=6,
∴|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|=(|F′P6|-|P6F|)+(|F′P5|-|P5F|)+(|F′P4|-|P4F|)=18
故選C.
點評:本題考查了雙曲線的性質(zhì),靈活運用雙曲線的定義,正確運用對稱性是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,F(xiàn)為雙曲線C:
x2
9
-
y2
16
=1
的左焦點,雙曲線C上的點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱,則|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•廣州二模)如圖所示,F(xiàn)為雙曲線C:
x2
9
-
y2
16
=1的左焦點,雙曲線C上的點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱,則|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省眉山市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

如圖所示,F(xiàn)為雙曲線C:的左焦點,雙曲線C上的點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱,則|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|的值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省眉山市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

如圖所示,F(xiàn)為雙曲線C:的左焦點,雙曲線C上的點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱,則|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|的值是   

查看答案和解析>>

同步練習(xí)冊答案