【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)將直線l: (t為參數(shù))化為極坐標(biāo)方程;
(2)設(shè)P是(1)中直線l上的動(dòng)點(diǎn),定點(diǎn)A( ),B是曲線ρ=﹣2sinθ上的動(dòng)點(diǎn),求|PA|+|PB|的最小值.

【答案】
(1)解:由直線l: (t為參數(shù))消去參數(shù)t,可得x+y= ,化為極坐標(biāo)方程ρcosθ+ρsinθ=
(2)解:定點(diǎn)A( ),化為A(1,1).

曲線ρ=﹣2sinθ化為ρ2=﹣2ρsinθ,∴直角坐標(biāo)方程為:x2+y2=﹣2y,

配方為x2+(y+1)2=1.

可得圓心C(0,﹣1).

連接AC交直線l于點(diǎn)P,交⊙C于點(diǎn)B,

|AC|= = ,

∴|PA|+|PB|的最小值=|AC|﹣r= ﹣1.


【解析】(1)由直線l: (t為參數(shù))消去參數(shù)t,可得x+y= ,利用 即可化為極坐標(biāo)方程;(2)定點(diǎn)A( ),化為A(1,1).曲線ρ=﹣2sinθ化為ρ2=﹣2ρsinθ,可得直角坐標(biāo)方程:x2+(y+1)2=1.可得圓心C(0,﹣1).連接AC交直線l于點(diǎn)P,交⊙C于點(diǎn)B,可得|PA|+|PB|的最小值=|AC|﹣r.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣ <φ< )的部分圖象如圖所示.
(Ⅰ)確定A,ω,φ的值,并寫出函數(shù)f(x)的解析式;
(Ⅱ)描述函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換而得到;
(Ⅲ)若f( )= <α< ),求tan2(α﹣ ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100


(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率. 附:K2=

P(K2>k0

0.10

0.05


0.01

0.005

k0

2.706

3.841


6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)曲線y=sinx上任一點(diǎn)(x,y)處切線斜率為g(x),則函數(shù)y=x2g(x)的部分圖象可以為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F(xiàn),E1分別是棱AA1 , BB1 , A1B1的中點(diǎn).
(1)求證:CE∥平面C1E1F;
(2)求證:平面C1E1F⊥平面CEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中ω>0)
(I)求函數(shù)f(x)的值域;
(II)若對(duì)任意的a∈R,函數(shù)y=f(x),x∈(a,a+π]的圖象與直線y=﹣1有且僅有兩個(gè)不同的交點(diǎn),試確定ω的值(不必證明),并求函數(shù)y=f(x),x∈R的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 上的一點(diǎn) 的橫坐標(biāo)為 ,焦點(diǎn)為 ,且 ,直線 與拋物線 交于 兩點(diǎn).
(1)求拋物線 的方程;
(2)若 軸上一點(diǎn),且△ 的面積等于 ,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案