在正四棱柱ABCD-A1B1C1D1中,AB=1,A1A=2,點(diǎn)E是棱CC1的中點(diǎn),求異面直線AE與BD1所成角的余弦值.

【答案】分析:以點(diǎn)D為坐標(biāo)原點(diǎn),DA為x軸,DB為y軸,D1D為z軸,建立空間直角坐標(biāo)系,分別求出向量的坐標(biāo),利用向量的夾角公式求出夾角,從而求出異面直線AE與BD1所成角的余弦值.
解答:解:如圖所示,建立空間直角坐標(biāo)系,則A(1,0,0),E(0,1,1)

B(1,1,0),D1(0,0,2)




∴異面直線AE與BD1所成角的余弦值等于
點(diǎn)評(píng):本題主要考查了異面直線所成的角,以及空間向量等有關(guān)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,棱長(zhǎng)AA1=2,AB=1,E是AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為CC1的中點(diǎn).
求證:(1)AC1∥平面BDE;(2)A1E⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,M、N分別為B1B和A1D的中點(diǎn).
(Ⅰ)求直線MN與平面ADD1A1所成角的大小;
(Ⅱ)求二面角A-MN-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)寧區(qū)一模)在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的邊長(zhǎng)為2,點(diǎn)P是CC1的中點(diǎn),直線AP與平面BCC1B1成30°角,求異面直線BC1和AP所成角的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)二模)在正四棱柱ABCD-A1B1C1D1中,E為AD中點(diǎn),F(xiàn)為B1C1中點(diǎn).
(Ⅰ)求證:A1F∥平面ECC1;
(Ⅱ)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案