已知函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增,且滿足f(xy)=f(x)+f(y).
(1)證明:數(shù)學(xué)公式;
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍.

解:(1)∵對一切x,y>0滿足f(x)+f(y)=f(x•y),

因此,滿足 ,
(2)∵f(3)=1,∴2=f(3)+f(3)=f(9);
∵f(x)是定義在(0,+∞)上的增函數(shù),
∴f(a)>f(a-1)+2,??
?1<a<
故a的取值范圍(1,
分析:(1)結(jié)合抽象表達(dá)式用代替x,y不變,即可轉(zhuǎn)化即可獲得問題的解答;
(2)首先利用數(shù)值的搭配計(jì)算f(9)=2,進(jìn)而對不等式進(jìn)行轉(zhuǎn)化,然后結(jié)合函數(shù)y=f(x)是定義在(0,+∞)上的單調(diào)性,結(jié)合變形后的抽象函數(shù)即可獲得變量a的要求,進(jìn)而問題即可獲得解答.
點(diǎn)評:本題考查的是抽象函數(shù)及其應(yīng)用的綜合類問題.在解答的過程當(dāng)中充分體現(xiàn)了定義域優(yōu)先的原則、特值的思想、轉(zhuǎn)化的思想以及計(jì)算和解不等式組的能力.值得同學(xué)們體會和反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x3+x2,數(shù)列|xn|(xn>0)的第一項(xiàng)xn=1,以后各項(xiàng)按如下方式取定:曲線x=f(x)在(xn+1,f(xn+1))處的切線與經(jīng)過(0,0)和(xn,f (xn))兩點(diǎn)的直線平行(如圖).
求證:當(dāng)n∈N*時(shí),
(Ⅰ)xn2+xn=3xn+12+2xn+1;
(Ⅱ)(
1
2
)n-1xn≤(
1
2
)n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若對于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有( 。﹤(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂市郯城一中高二(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

下列說法正確的有( )個(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.
A.0
B.1
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案