函數(shù)y=-x2+2+2x在[0,10]上的最小值為
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將函數(shù)化為頂點(diǎn)式,得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值.
解答: 解:∵y=-(x-1)2+3,對(duì)稱軸x=1,開口向上,
∴函數(shù)在[0,1)遞增,在(1,10]遞減,
∴x=10時(shí),函數(shù)取到最小值,最小值為-78,
故答案為:-78.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)D在BC邊上,且
CD
=2
DB
,
CD
=r
AB
+s
AC
,則r+s=( 。
A、
2
3
B、
4
3
C、1
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,2)
,
b
=(2,3)
,若
m
a
+
b
n
=
a
-
b
的夾角為鈍角,則實(shí)數(shù)λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-1(a∈R是常數(shù)).
(1)設(shè)a=-3,x=x1、x=x2是函數(shù)y=f(x)的極值點(diǎn),試證明曲線y=f(x)關(guān)于點(diǎn)M(
x1+x2
2
,f(
x1+x2
2
))
對(duì)稱;
(2)是否存在常數(shù)a,使得?x∈[-1,5],|f(x)|≤33恒成立?若存在,求常數(shù)a的值或取值范圍;若不存在,請(qǐng)說明理由.
(注:曲線y=f(x)關(guān)于點(diǎn)M對(duì)稱是指,對(duì)于曲線y=f(x)上任意一點(diǎn)P,若點(diǎn)P關(guān)于M的對(duì)稱點(diǎn)為Q,則Q在曲線y=f(x)上.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一平面與正方形的十二條棱所成的角都等于α,則sin12α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的中心為O,左焦點(diǎn)為F,P是雙曲線上的一點(diǎn)
OP
PF
=0且4
OP
OF
=
OF
2
,則該雙曲線的離心率是( 。
A、
10
-
2
2
B、
10
+
2
2
C、
7
-
3
D、
7
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosωx•sin(ωx-
π
6
)+
1
4
(ω>0)的最小正周期為2π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[0,π]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)在三角形ABC中,求a=2,c=
3
,cos
B
2
=
2
5
5
角形ABC的面積S;
(Ⅱ)設(shè)函數(shù)f(x)=
3
2
cosx+
1
2
sinx+1,x∈[-
π
3
,
6
]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,點(diǎn)A(3,-2,4)關(guān)于xOy平面的對(duì)稱點(diǎn)的坐標(biāo)為(  )
A、(3,-2,4)
B、(3,2,4)
C、(-3,-2,4)
D、(3,-2,-4)

查看答案和解析>>

同步練習(xí)冊(cè)答案