已知橢圓C的中心在圓點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點,M是橢圓短軸的一個端點,過F1的直線l與橢圓交于A,B兩點,△MF1F2的面積為4,△ABF2的周長為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點Q的坐標為(1,0),是否存在橢圓上的點P及以Q為圓心的一個圓,使得該圓與直線PF1,PF2都相切,若存在,求出P點坐標及圓的方程;若不存在,請說明理由.

答案:
解析:

  (Ⅰ)由題意知:,解得

  ∴橢圓的方程為  5分

  (Ⅱ)假設(shè)存在橢圓上的一點,使得直線與以為圓心的圓相切,則到直線的距離相等,

  ,

  化簡整理得:  9分

  ∵點在橢圓上,∴ 解得:(舍)  11分

  時,,,∴橢圓上存在點,其坐標為,使得直線與以為圓心的圓相切  13分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,長軸長是短軸長的
3
倍,其上一點到右焦點的最短距離為
3
-
2

(1)求橢圓C的標準方程;
(2)若直線l:y=kx+b與圓O:x2+y2=
3
4
相切,且交橢圓C于A、B兩點,求當(dāng)△AOB的面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點(1,
3
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為
12
2
7
,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為
12
,橢圓的短軸端點和焦點所組成的四邊形周長等于8,
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(0,-2)的直線l與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標原點,右準線為x=3
2
,離心率為
6
3
.若直線y=t(t>o)與橢圓C交于不同的兩點A,B,以線段AB為直徑作圓M.
(1)求橢圓C的標準方程;
(2)若圓M與x軸相切,求圓M被直線x-
3
y+1=0截得的線段長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點,離心率等于
23
,右焦點F是圓(x-1)2+y2=1的圓心,過橢圓上位于y軸左側(cè)的一動點P作該圓的兩條切線分別交y軸于M、N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 求線段MN的長的最大值,并求出此時點P的坐標.

查看答案和解析>>

同步練習(xí)冊答案