已知平面內(nèi)動點(diǎn)P到兩定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)2a,關(guān)于動點(diǎn)P的軌跡正確的說法是
 

①點(diǎn)P的軌跡一定是橢圓;                
②2a>|F1F2|時,點(diǎn)P的軌跡是橢圓;
③2a=|F1F2|時,點(diǎn)P的軌跡是線段F1F2;  
④點(diǎn)P的軌跡一定存在;
⑤點(diǎn)P的軌跡不一定存在.
分析:由平面內(nèi)動點(diǎn)P到兩定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)2a,可得:當(dāng)2a>|F1F2|時,點(diǎn)P的軌跡是橢圓;
當(dāng)2a=|F1F2|時,點(diǎn)P的軌跡是線段F1F2; 當(dāng)2a<|F1F2|時,動點(diǎn)P的軌跡不存在.即可判斷出答案.
解答:解:由平面內(nèi)動點(diǎn)P到兩定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)2a,可知:
當(dāng)2a>|F1F2|時,點(diǎn)P的軌跡是橢圓;當(dāng)2a=|F1F2|時,點(diǎn)P的軌跡是線段F1F2; 當(dāng)2a<|F1F2|時,動點(diǎn)P的軌跡不存在.
由以上結(jié)論可知:只有②③⑤正確.
故答案為:②③⑤.
點(diǎn)評:本題考查了橢圓的定義、分類討論的思想方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求
AD
EB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)已知平面內(nèi)一動點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(1)求動點(diǎn)P的軌跡C的方程.
(2)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1、l2,設(shè)l1與軌跡C交于A、B兩點(diǎn),l2與軌跡C交于D、E兩點(diǎn),求|FA|•|FB|+|FC|•|FD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省武漢市高三11月調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知平面內(nèi)一動點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.

(Ⅰ)求動點(diǎn)P的軌跡C的方程;

(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省武漢市高三11月調(diào)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知平面內(nèi)一動點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.

(Ⅰ)求動點(diǎn)P的軌跡C的方程;

(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案