(本題滿分12分)已知定義在區(qū)間(0,+)上的函數(shù),,且當.① 求的值;② 判斷的單調(diào)性;③ 若 ,解不等式.

 

【答案】

解 ①令;②單調(diào)減函數(shù) 

③,。

【解析】本試題主要是考查了抽象函數(shù)的性質(zhì)的運用,以及利用賦值法求解函數(shù)值和解不等式的綜合運用。

(1)令x1=x2,得到f(1)的值。

(2)在第一問的基礎(chǔ)上,設(shè)x1>x2>0,然后作差變形結(jié)合已知條件得到結(jié)論。

(3)因為f(3=-1,根據(jù)f(9)與f(3)的關(guān)系得到結(jié)論。

解 ①,設(shè) 

②設(shè), 

,為單調(diào)減函數(shù)

,即,,單減函數(shù),。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯(lián)考數(shù)學(理 題型:解答題

(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學卷 題型:解答題

(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題

(本題滿分12分)

已知橢圓的長軸長是短軸長的倍,,是它的左,右焦點.

(1)若,且,,求的坐標;

(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線是切點),且使,求動點的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省高二上學期10月月考理科數(shù)學卷 題型:解答題

(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求的取值范圍

 

查看答案和解析>>

同步練習冊答案