已知等比數(shù)列{an}中a1•a5=4,那么a1•a2•a3•a4•a5等于


  1. A.
    ±64
  2. B.
    64
  3. C.
    ±32
  4. D.
    32
C
分析:利用等比數(shù)列的性質(zhì)可知a32=a1•a5,可求出a3的值,再利用等比數(shù)列的性質(zhì)可知a1•a2•a3•a4•a5=a35,可求出所求.
解答:∵等比數(shù)列{an}中a1•a5=4,
∴a1•a5=a32=4即a3=±2
而a1•a2•a3•a4•a5=a35=±32
故選C.
點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì),熟練掌握等比數(shù)列的性質(zhì)是解本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案