已知四棱錐的底面為菱形,且,
,的中點.

(Ⅰ)求證:平面;
(Ⅱ)求點到面的距離.
(I)證明:連接

為等腰直角三角形
的中點
……………………2分
得出 是等邊三角形
由勾股定理得, 
(II)。

試題分析:(I)證明:連接
 

為等腰直角三角形
的中點
……………………2分

是等邊三角形
,………………………………4分

,即
……………………6分
(II)設點到面的距離為
  …………8分
,到面的距離

  ………………………………10分

到面的距離為……………………12分
點評:中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題計算距離時運用了“等體積法”,簡化了解答過程。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

為兩個平面,為兩條直線,且,有如下兩個命題:
①若;②若. 那么( )
A.①是真命題,②是假命題B.①是假命題,②是真命題
C.①、②都是真命題D.①、②都是假命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在長方體中,,分別是面,面的中心,則所成的角為(    )
A.  B.    C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點,則異面直線AB1和BM所成的角的大小是______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖:,

(1)求的大;
(2)當時,判斷的形狀,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列命題:
①如果,是兩條直線,且//,那么平行于經(jīng)過的任何平面;
②如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面;
③若直線是異面直線,直線,是異面直線,則直線,也是異面直線;
④已知平面⊥平面,且,若,則⊥平面;
⑤已知直線⊥平面,直線在平面內(nèi),//,則.
其中正確命題的序號是     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求證:AB⊥平面PBC
(2)求三棱錐C-ADP的體積
(3)在棱PB上是否存在點M使CM∥平面PAD?
若存在,求的值。若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,

(1)線段的中點為,線段的中點為,求證:
(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)如圖:AD=2,AB=4的長方形所在平面與正所在平面互相垂直,分別為的中點.

(1)求四棱錐-的體積;
(2)求證:平面
(3)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案