設(shè)命題p:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽.命題q:函數(shù)y=lg(x2-ax+1)的值域?yàn)镽.如果命題“p或q”為真命題,命題“p且q”為假命題,求實(shí)數(shù)a的范圍.
若p真,則
a>0
(-1)2-4a2<0
,解得a>
1
2

若q真,則(-a)2-4≥0,解得a≤-2或者a≥2.
因?yàn)槊}“p或q”為真命題,命題“p且q”為假命題,
所以命題p和q有且僅有一個(gè)為真.
所以實(shí)數(shù)a范圍為:a≤-2或
1
2
<a<2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空數(shù)集.設(shè).f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(wàn)(M);
(II)若P∩M=φ,a函數(shù)f(x)是定義在R上的單調(diào)遞增函數(shù),求集合P,M
(III)判斷命題“若P∪M≠R,則.f(P)∪f(wàn)(M)≠R”的真假,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有下面四個(gè)命題:
①曲線y=-x2+2x+4在點(diǎn)(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點(diǎn)P到點(diǎn)A(
1
2
,0),B(
1
2
,2)
及直線x=-
1
2
的距離相等,那么滿足條件的點(diǎn)P有且只有1個(gè).
其中正確命題的序號(hào)是
 
.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

現(xiàn)有下面四個(gè)命題:
①曲線y=-x2+2x+4在點(diǎn)(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點(diǎn)P到點(diǎn)數(shù)學(xué)公式及直線數(shù)學(xué)公式的距離相等,那么滿足條件的點(diǎn)P有且只有1個(gè).
其中正確命題的序號(hào)是________.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空數(shù)集.設(shè).f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(wàn)(M);
(II)若P∩M=φ,a函數(shù)f(x)是定義在R上的單調(diào)遞增函數(shù),求集合P,M
(III)判斷命題“若P∪M≠R,則.f(P)∪f(wàn)(M)≠R”的真假,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案